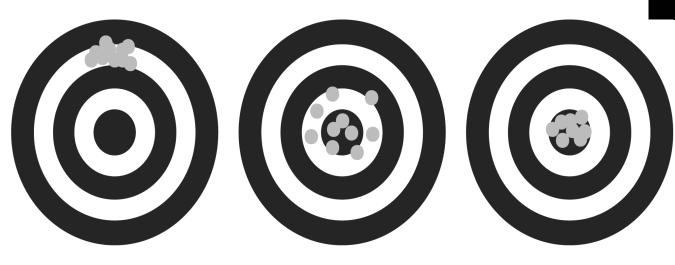


nel trattamento multimodale del Tumore Prostatico

Aosta 16 DICEMBRE 2017

Palazzo della Regione - Sala Maria Ida Viglino

Esperienze in IGRT: US-guided e altre modalità


Sara Bartoncini

AOU Città della Salute e della Scienza di Torino Radioterapia U University of Turin

RATIONALE FOR IGRT

Set-up error Organ motion

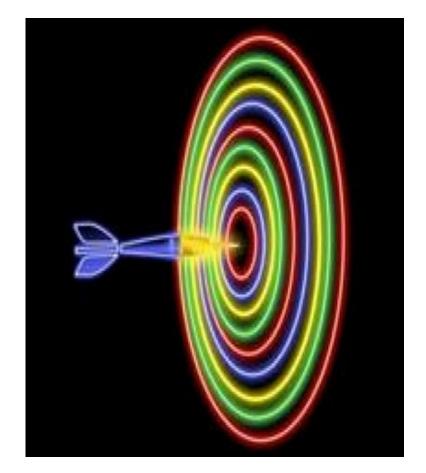
Highly conformal radiation techniques \rightarrow Geographical miss Dose (per – fraction) escalation \rightarrow PTV margin reduction

Precise, not accurate (IMRT without IGRT)

Accurate, but not precise (wide margin radiotherapy) Precise and accurate (IMRT with IGRT)

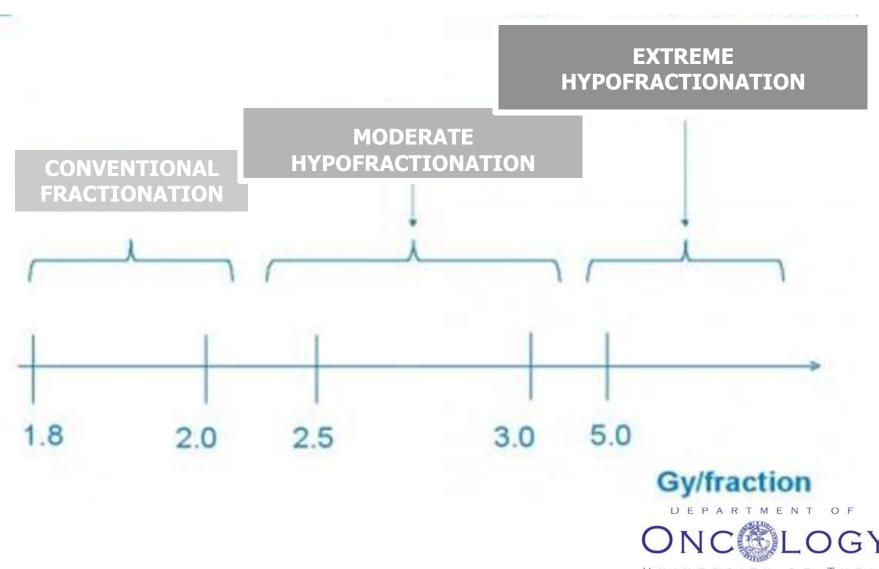
IGRT IN PROSTATE CANCER

From CTV to PTV


Internal Margin for organ motion

Intra-fraction motion

- Respiratory
- Bowel movement
- Bladder filling


Inter-fraction motion

- Bowel filling
- Bladder filling
- Setup Errors

ADVANCES IN RADICAL RADIOTHERAPY

UNIVERSITY OF TURIN

HYPOFRACTIONATION

Linus C. Benjamin¹ · Alison C. Tree^{1,2} · David P. Dearnaley^{1,2}

3 systematic reviews, 9 randomized controlled trials 6357 patients randomized to CF or MH MH **well tolerated and as clinically effective** as CF

Superiority randomize	d studies	
Arcangeli [30]	LR/IR 24% HR 76%	CFRT
Hoffinan [29]	LR 28% IR 71% HR 1%	IG-IMRT
Pollack [31]	IR 36% HR 64%	IMRT
HYPRO [2-17, 18••, 19-21, 22•]	IR 27% HR 73%	CFRT
Non-inferiority randon	nized studies	
RTOG 0415 [23•]	LR	IMRT 79-809 CFRT 20-21%
PROFIT [24•]	IR	IGRT
		IGRT
CHHiP [18**, 19, 27]	LR 15% IR 73% HR 12%	IMRT +/- IG

SEVERE HYPOFRACTIONATION

2

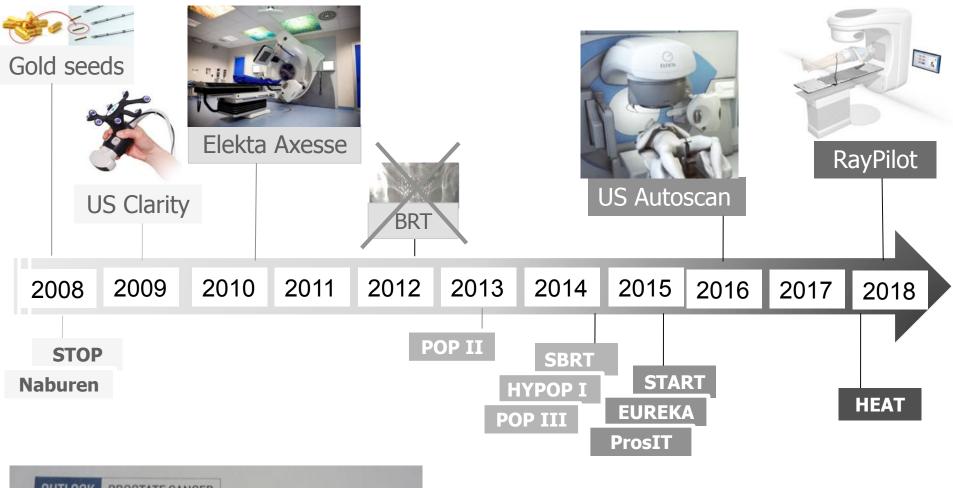
Original research article

SBRT and extreme hypofractionation: A new era in prostate cancer treatments?

Study	Treatment	# of patients	Risk group(s)	Median follow-up (months)	Late Grade 3 GU toxicity	Late Grade 3 GI toxicity	FFBF
Gantry-based syst	ems	12.10				642.0	
Madsen et al. ⁵²	33.5 Gy in 5 fx	40	Low	41	None	None	90% 4-years actuarial
Boike et al. ⁵³	45–50 Gy in <mark>5</mark> fx	45	Low and int	30, 18, 12	4%	2% plus 1 Grade 4	100%
Alongi et al. ⁵⁴	35 Gy in 5 fx	40	Low and int	11	None	None	-
Loblaw et al. ⁵⁶	35 Gy in 5 fx Once a week	84	Low	55	1%	None	98% 5-year
Cyberknife							
King et al.45	36.25 Gy in 5 fx	69	Low	32	3.5%	None	97%
Friedland et al. ⁴⁰	35 Gy in 5 fx	112	Low, int, and high	24	< 1%	None	98%
Katz et al. ⁴³	35-36.25 Gy in 5	304	Low, int and high	48	2%	None	97, 93, 75%
	fx						4-year actuarial
Freeman et al. ⁴⁷	7–7.25 Gy in 5 fx	41	Low	60	< 1%	None	93% 5-year actuarial
Bolzicco et al.42	35 Gy in 5 fx	100	Low, int and high	36	None	None	96%
McBride et al. ⁵¹	36.25–37.5 Gy in 5 fx	45	Low	44	< 1%	None	100%
lu et al. ⁵⁰	35–36.25 Gy in 5 fx	41	Int	21	None	None	97.56%
Chen et al. ⁴⁹	35–36.25 Gy in 5 fx	100	Low, int and high	26	None	None	99%
Kang et al. ³⁷	32–36 Gy in 4 fx	44	Low, int and high	40	None	None	100%, 100%, 90.9%
Oliai et al. ⁴⁸	37.5 Gy vs. 35–36.25 Gy in 5 fractions	70	Low, int and high	27-37	4%	None	100%, 95%, 77.1% 3-years
King et al. ²²	36.25 Gy in 4–5 fractions	1100	Low, int and high	36	-	-	93% 5-years

FFBF: free from biochemical failure; int.: intermediate; GU: genitourinary; GI: gastrointestinal.

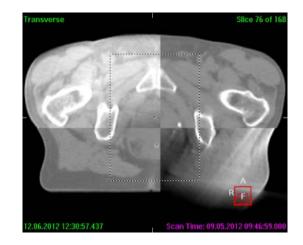
Phase I-II data encouraging Phase III data is eagerly awaited (HYPO trial, PACE B)

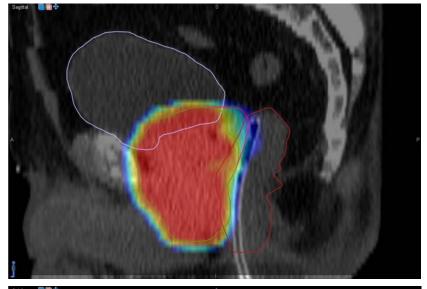


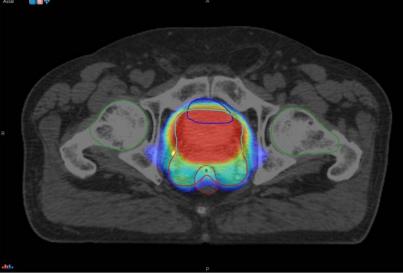
IGRT TECHNOLOGIES

UNIVERSITY OF TURIN

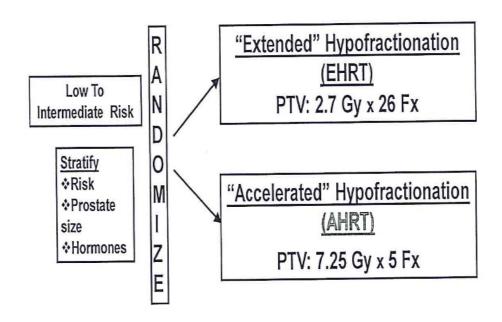
DEPARTMENT OF ONCLOGY UNIVERSITY OF TURIN


MODERATE HYPOFRACTIONATION

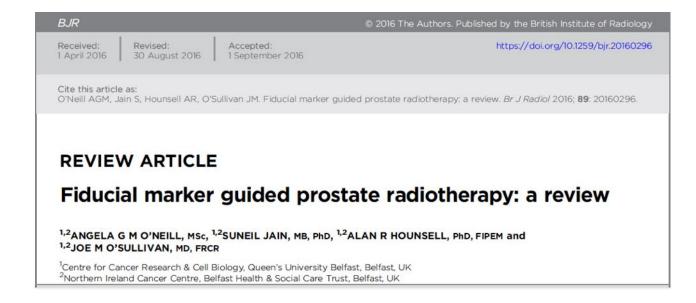



- Intermediate risk
- Schedule: 70,2 Gy/26 fractions
- IMRT-VMAT
- IGRT- Daily US acquisition or CBCT

SEVERE HYPOFRACTIONATION


- □ Low-risk
- □ Schedule: 36.25 Gy/5 fractions
- □ IMRT-VMAT plan
- □ IGRT-Daily ultrasound acquisition
- 29 patients underwent SBRT
- 27 patients selected for this analysis

HEAT STUDY


A Phase III trial of Radiation Hypofractionation via Extended versus

Accelerated Therapy (HEAT) for prostate cancer

DEPARTMENT OF ONCOLOGY UNIVERSITY OF TURIN

FIDUCIAL MARKERS

- Position of prostate, reflect prostate motion or deformation
- Changes in rectal/bladder volume and SV motion are not detected
- Combination of FM and soft-tissue analysis is the most effective approach
- Marker migration is minimal
- Implantation well tolerated, but surgical techniques and toxicity data require standardization

EXPERIENCE WITH GOLD SEED FIDUCIALS

Radiol med DOI 10.1007/s11547-012-0797-7

RADIOTHERAPY RADIOTERAPIA

Tracking target position variability using intraprostatic fiducial markers and electronic portal imaging in prostate cancer radiotherapy

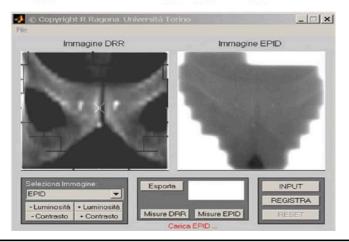


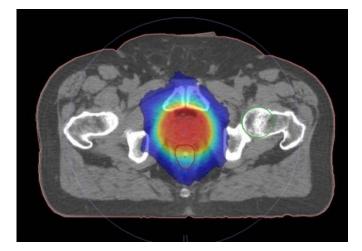
Table 2 Systematic (Σ) and random (σ) components for setup and organ motion derived from analysis of the sample of considered patients

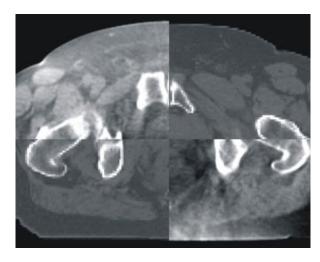
-	Σ_{Setup} (mm)	Σ_{Setup} (mm)	Σ _{Organ M.} (mm)	σ _{Organ M.} (mm)	Margin (mm)
LL	2.40	3.00	1.35	1.13	7
AP	2.08	2.07	1.92	2.68	9
CC	1.70	1.79	2.25	3.63	9

LL, lateral-lateral; AP, anterior-posterior; CC, cranial-caudal; M., movement

Organ tracking through fiducial markers and electronic portal imaging is able to reduce the spread of displacements, significantly contributing to improve the ballistic precision of radiation delivery.

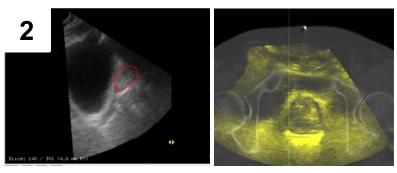
IGRT TECHNOLOGIES – CONE BEAM


Prostatic cancer IGRT

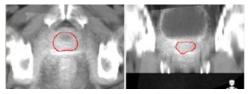

Image-guided radiotherapy for prostate cancer with cone beam CT: dosimetric effects of imaging frequency and PTV margin

Hemal Ariyaratne^{a,*}, Hayley Chesham^b, John Pettingell^c, Roberto Alonzi^a
^{*}Mount Vernon Cancer Centre, United Kingdom,^{*}Radiation Oncology Centres Maroochydore, Australia; ^cProton Partners International, Newport, United Kingdom

CBCT: visualization of tumor position before each fraction, allowing on-line repositioning and daily assessment of changes in tumour volume and patient's anatomy

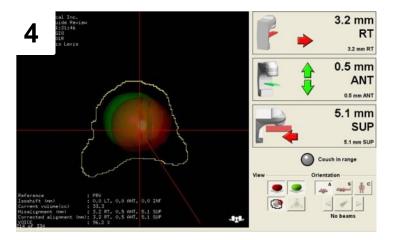


US-CLARITY

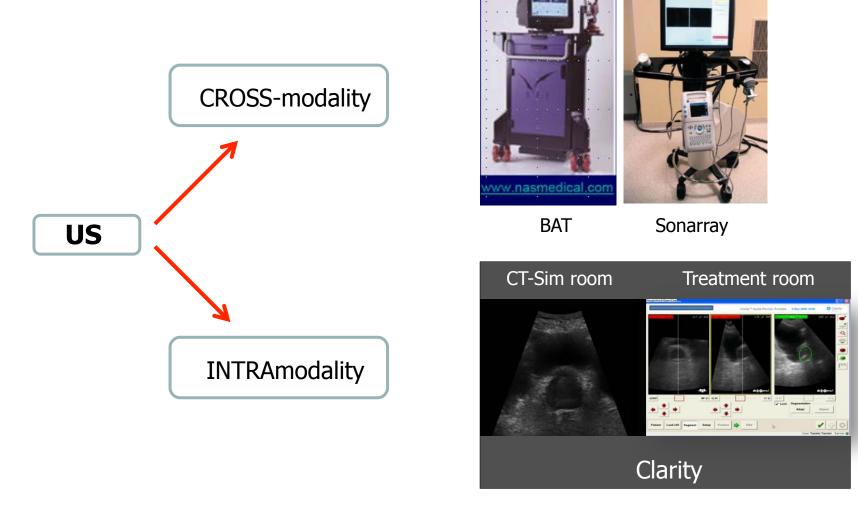


1

3D US localization of the prostate



PRV (Positioning Reference Volume) definition



3D US localization of the prostate Manual segmentation

Repositioning based on comparison of planning 3D-US study to daily 3D-US evaluation

CROSS-MODALITY vs INTRAMODALITY

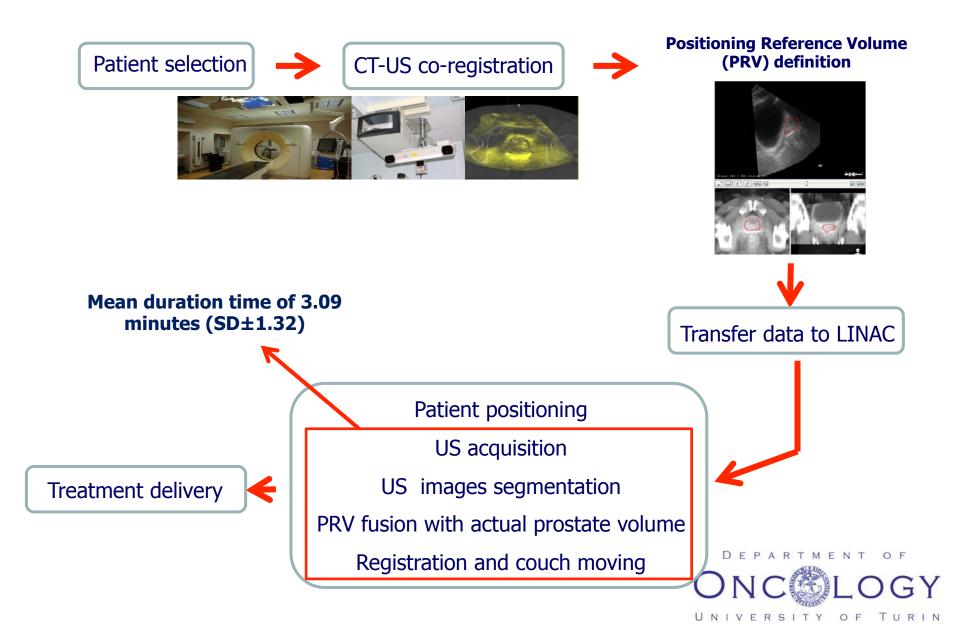
A more accurate prostate alignment appears to be obtained with IM method

US-CLARITY

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 4, 2014

Impact of the observers' experience on daily prostate localization accuracy in ultrasound-based IGRT with the Clarity platform

Christian Fiandra,^{1a} Alessia Guarneri,² Fernando Muñoz,² Francesco Moretto,¹ Andrea Riccardo Filippi,¹ Mario Levis,¹ Riccardo Ragona,¹ and Umberto Ricardi¹ A training period is recommended in order to learn both the imaging and repositioning procedures


ORIGINAL ARTICLE

Three-Dimensional Ultrasound-Based Image-Guided Hypofractionated Radiotherapy for Intermediate-Risk Prostate Cancer: Results of a Consecutive Case Series

Pierfrancesco Franco^a", Fernando Munoz^b, Mario Levis^a, Christian Fiandra^a, Alessia Guarneri^b, Francesco Moretto^b, Sara Bartoncini^a, Francesca Arcadipane^a, Serena Badellino^a, Cristina Piva^a, Elisabetta Trino^a, Andrea Ruggieri^a, Andrea Riccardo Filippi^a & Riccardo Ragona^a Cancer Investigation, 2015

DEPARTMENT OF ONCELOGY UNIVERSITY OF TURIN

CLARITY PLATFORM PROCEDURE

US: PROS AND CONS BALANCE

FAST

٠

•

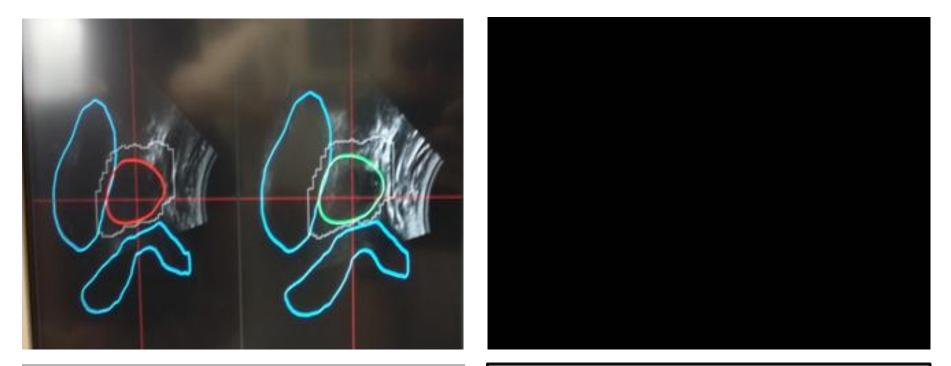
•

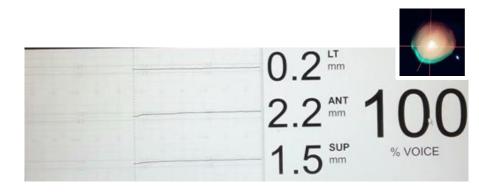
٠

•

CONs PROs NON INVASIVE **OBESITY** EXCELLENT VISUALIZATION OF LEARNING CURVE SOFT TISSUES STRUCTURES **BLADDER FILLING COMPLIANCE** NON IONIZING METHODS INTER USER VARIATION COST EFFECTIVE PROBE INDUCED PRESSION? ٠ NO OVERSTIMATES VOLUME

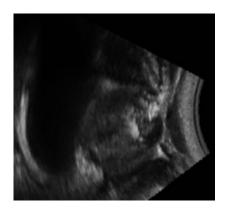
INTRAFRACTIONAL IMAGING: US-AUTOSCAN





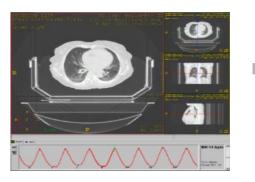
US-AUTOSCAN

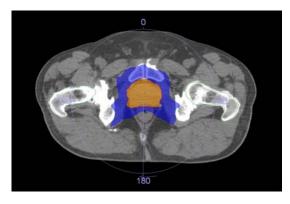
Inter-fraction



US - AUTOSCAN

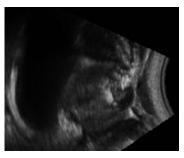
- New system based on acquisitions with a transperineal ultrasound probe and an intramodality registration
- Probe with an internal **automed sweeping**
- Monitoring **intrafraction** motions

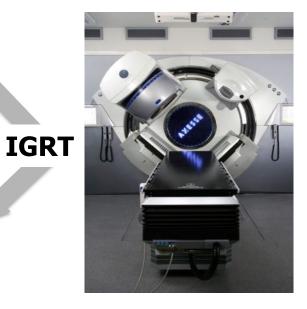




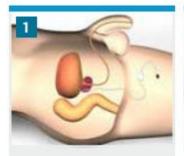
RADIATION TREATMENT

CT or 4D-CT




TREATMENT PLAN

Daily CBCT

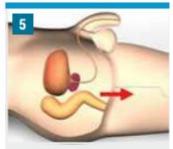


RAYPILOT SYSTEM

PRE-TREATMENT Insert the RayPilot® transmitter in the ROI to track before the CT and dose planning.

DURING TREATMENT

Position the RayPilot® receiving system on the treatment couch, place the patient in treatment position and connect the RayPilot® transmitter.


DURING TREATMENT

The RayPilot* transmitter sends out a positioning signal to the RayPilot* receiving system. Move the treatment table according to the instructions in order to put the ROI into the desired position.

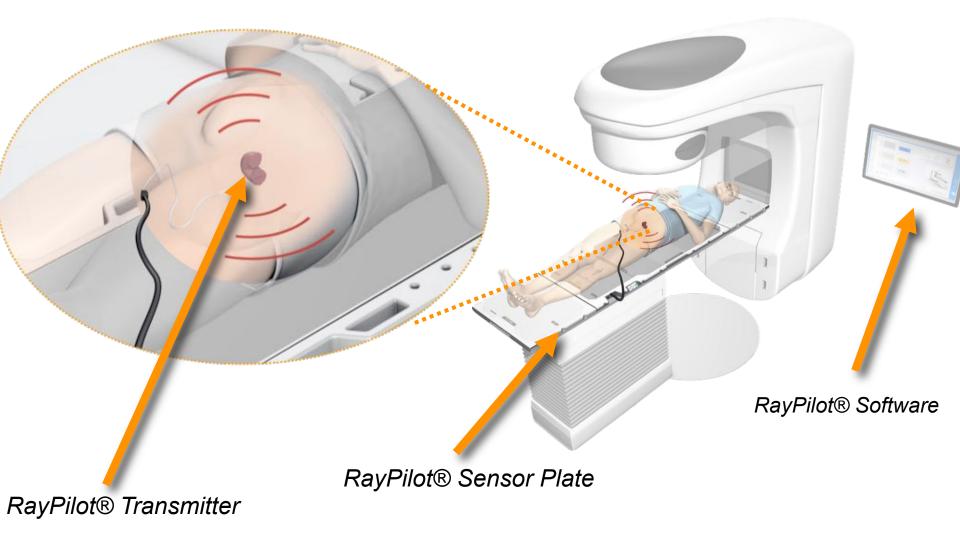
DURING TREATMENT

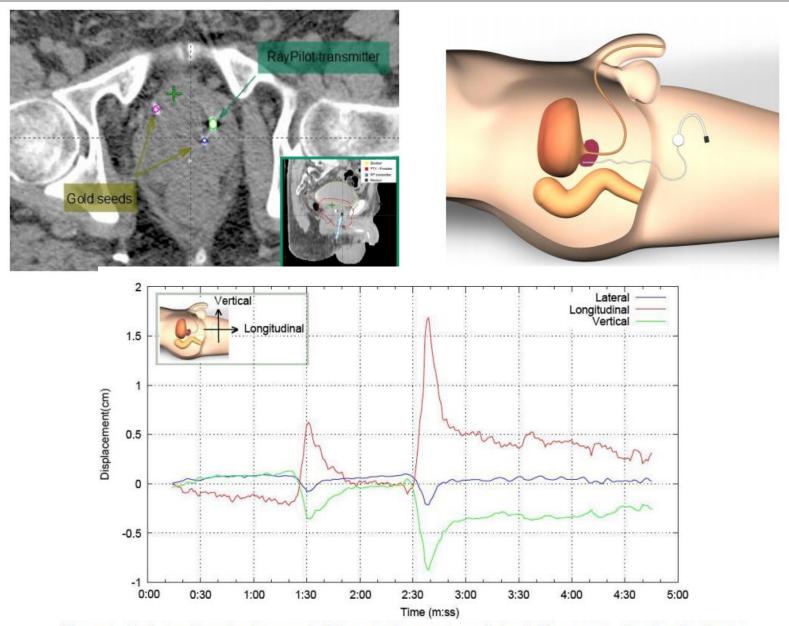
The RayPilot® system tracks and record the ROI continuously during the radiotherapy session. A warning occurs if the ROI moves out of the predefined margin.

POST-TREATMENT Remove the RayPilot[®] transmitter after the final treatment.

No foreign objects are left in the body.

BENEFITS


- Objective and fast patient set up without X-ray
- Automatic patient identification
- Real time target positioning
- In situ dosimetry
- Time stamped positioning data
- Follow up and treatment analyses



A radio signal is transmitted to the Sensor plate. Set up coordinates are displayed

The main parts of the RayPilot® system

RAYPILOT

Recorded intrafraction displacement. A transient excursion of about 20 seconds duration is shown.

UNIVERSITY OF TURIN

Between January 2010 and June 2017

325 intermediate prostate cancer patients underwent **hypofractionated RT** using daily IGRT

- □ **IGRT:** CBCT or 3D-US imaging (ClarityTM)
- Daily on-line target localization prior RT
- □ In selected case, **hormonal therapy** for 6 months

STUDY INCLUSION CRITERIA

- a) intermediate risk-group
- b) pretreatment staging (PSA, DRE)
- c) prostate biopsy
- d) histologically confirmed prostate adenocarcinoma
- e) International Prostatic Symptoms Score (IPSS) < 12

STUDY EXCLUSION CRITERIA

- a) low compliance to treatment protocol (no adequate bladder filling, rectal volume >100 cc)
- b) obese patients and/or other conditions limiting US visualization of the prostate gland
- c) previous abdominal surgery

HYPOFRACTIONATED RADIATION SCHEDULE

SIB

70,2 Gy/26 fr to prostate (2,7 Gy/day) 61,1 Gy to prostate+SV (2,35 Gy/day) $BED_2 = 84,4$ Gy if $\alpha/\beta = 1,5$ Gy 80 Gy if $\alpha/\beta = 3$ Gy

TARGET VOLUME DEFINITION

PTV (Elekta Precise[™]) : CTV + 10 mm in all directions and 7 mm posteriorly

PTV (Elekta Axesse[™]): CTV + 7 mm in all directions and 5 mm posteriorly

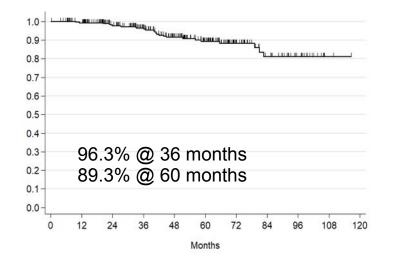
TREATMENT PLANNING

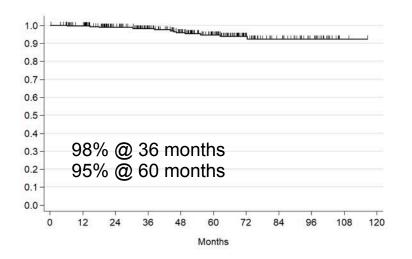
3DCRT or IMRT (7 static fields step&shoot / VMAT single arc)

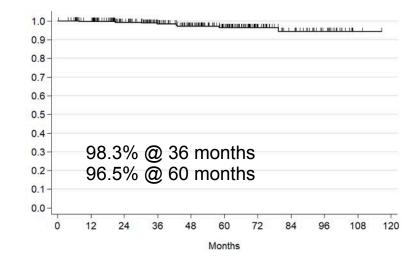
CONSTRAINTS

Rectum (V_{67} <15% o V_{58} <25%) Bladder (V_{64} <35% o V_{73} <15% o V_{70} <25%) Femoral heads (D_{mean} <44.4 Gy)

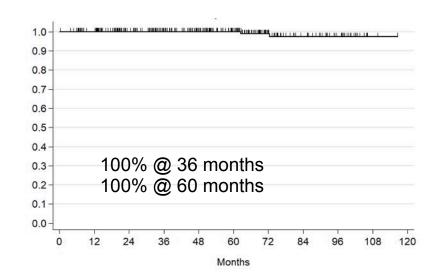
Caratteris	tiche pazienti	N (%)
ETA'		
	< 70 anni	81 (24.9)
	≥ 70 anni	244 (75.1)
	Media	73
	Range	53.5-82.6
z-PSA		
	<10 ng/ml	207 (63.7)
	10-19.9 ng/ml	118 (36.3)
GS		
	3+3	75 (23.1)
	3+4	138 (42.5)
	4+3	84 (25.8)
STADIO		-
	cT1c	197 (60,6)
	cT2a	10 (3.1)
	cT2b	15 (4.6)
	cT2c	93 (28.6)
TURP		
	Si	23 (7.3)
	No	302 (92.7)
OT		
	Si	120 (36.9)
	No	205 (63.1)

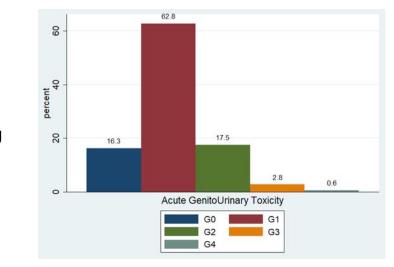

Treatment	N (%)	
TECNIQUE	3DCRT	44 (13.5)
	IMRT	152 (46.8)
	VMAT	129 (39.7)
IGRT	JLTRASOUND	243 (74.7)
	CBCT	82 (25.3)

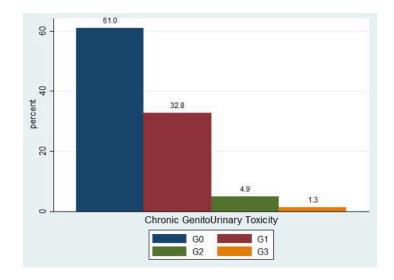

- Median follow-up: 52,3 months (range 6 106 months)
- Biochemical relapse free survival: 89.3% at 60 months
- Median time to biochemical failure: 45.5 months (range 11.6 96.7 months)
- 25 patients experienced **biochemical failure** (11 loco-regional and 9 distant failure)
- **13 death:** only 3 patients died from disease, while other 10 died from other causes

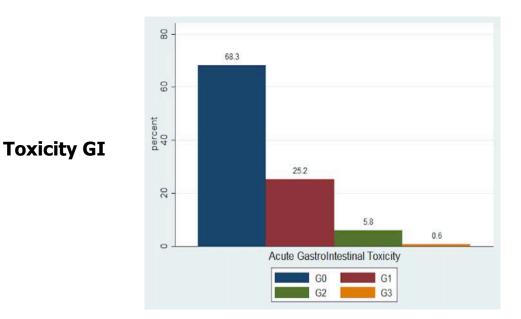

Biochemical disease free survival

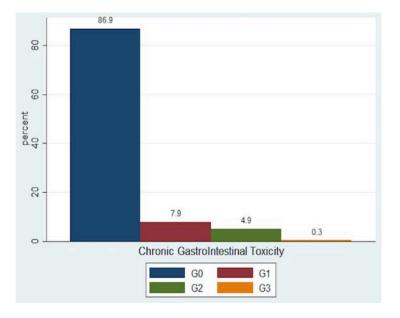
Disease free survival




Overall Survival






Cancer Specific Survival

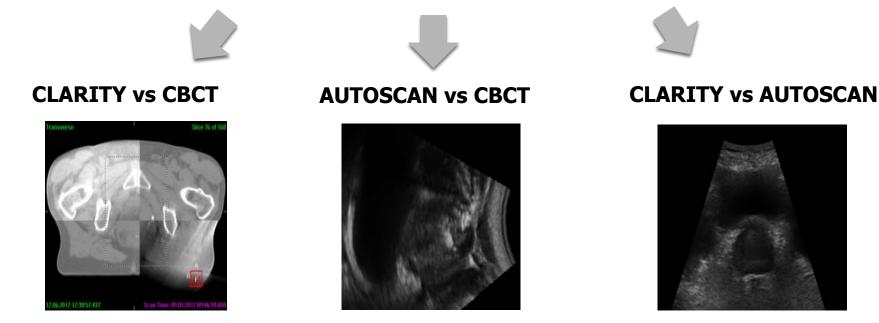
Toxicity GU

ANCILLARY STUDY – IGRT METHODS COMPARISON

Between April 2015 and July 2016

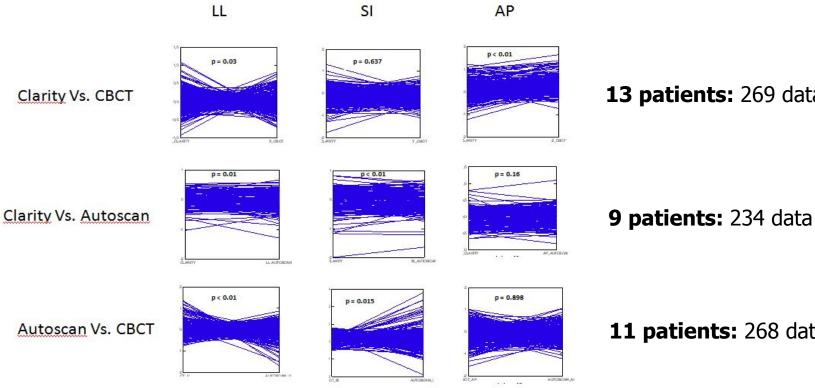
intermediate prostate cancer patients underwent hypofractionated RT using daily IGRT

Good prostate gland visualization with both Clarity and Autoscan system


3 groups of IGRT modality comparison

MEN

0


TURIN

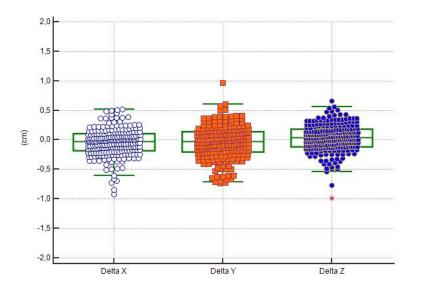
UNIVERSITY

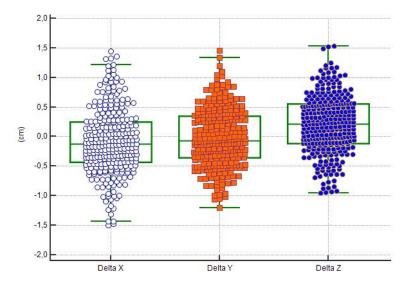
Patient repositioning always based on Clarity or CBCT results

RESULTS – IGRT METHODS COMPARISON

13 patients: 269 data

11 patients: 268 data


	LL	SI	AP
Clarity - CBCT	37	34	5
Clarity - Autoscan	0	10	5
Autoscan - CBCT	21	23	25


RESULTS – IGRT METHODS COMPARISON

	ш	SI	AP	
Clarity - CBCT	0.076 ± 0.564	-0.014 ± 0.496	0,246 ± 0,483	
Clarity - Autoscan	-0,05 ± 0,246	-0,068 ± 0,29	0,028 ± 0,254	
Autoscan - CBCT	-0,141 ± 0,698	-0,102 ± 0,688	0,005 ± 0,587	

Autoscan

CBCT

US - AUTOSCAN

Intrafraction monitoring of prostate motion during radiotherapy using the Clarity[®] Autoscan Transperineal Ultrasound (TPUS) system

A.K. Richardson^{*}, P. Jacobs Bristol Haematology and Oncology Centre, Horfield Road, Bristol, BS2 8ED, UK

- Displacements 52%, 8% and 2% at 3, 7 and 10 mm thresholds respectively
- Posterior motion was most common

CONCLUSION

- Hypofractionated treatment: **well-tolerated and effective** treatment option
- Clarity 3D-US based IGRT is used into daily clinical practice as reference IGRT modality with reliable clinical results in terms of efficacy and toxicity
- **US-Autoscan** seems to be an accurate IGRT method
- US-Autoscan: fast and reliable method to ensure **accurate delivery** of treatment plans
- **Further investigations** are necessary for evaluating the performances of intrafraction monitoring with this device

CONCLUSION

Whatever modality you choose to treat the prostate:

The proper treatment requires a system of IGRT that allows very accurate localization

No matter how good is the beam, if the target is not where we thought

Keith Haring - Wallpaper