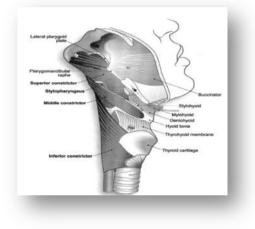
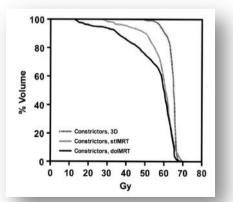


Head and Neck Intensity Modulated Radiation Treatment: dysphagia after Constrictors Muscles definition

Rosario Mazzola, MD

Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy Chair: Filippo Alongi, MD




Background

DYSPHAGIA AND ASPIRATION AFTER CHEMORADIOTHERAPY FOR HEAD-AND-NECK CANCER: WHICH ANATOMIC STRUCTURES ARE AFFECTED AND CAN THEY BE SPARED BY IMRT?

Radiation damage to the *Pharyngeal Constrictors* and the glottic/supraglottic larynx were implicated in post-radiotherapy *dysphagia*

IMRT can reduce the volumes of these structures receiving high doses, and incorporating the goal of *sparing* these structures into the optimization cost function can achieve significant additional benefit

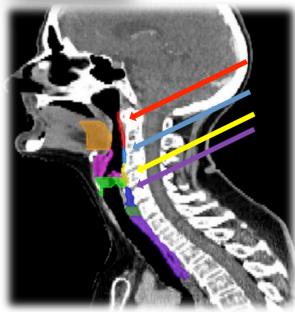
Background

Author	Pts	Site	Dosimetric Factors correlated with late dysphagia	Limits	Anatomic Borders				
	rts	Site			SPC	MPC	IPC	Crico	
Feng ³⁴ (2007)	36	OP/NI	PCs (mean dose, V50, V60, V65)	Cranial	Caudal tips of pterygoid plates	Upper edge of hyoid bone	Below the hyoid bone	Not Mentioned	
				Caudal	Upper edge hyoid bone	Lower edge of the hyoid bone	Inferior edge of cricoid		
Levendag ²¹ (2007)	56	OP	SPC, MPC (mean dose)	Cranial	Mild C2	Upper C3	Upper C5	Mild C6	
				Caudal	Upper C3	Upper C4	Mid C6	First ring of trachea	
Jensen ³⁵ (2007)	25	PH	SL (mean dose, V60, V65)	Cranial	Lower part transverse process C2	Lower part transverse process C2	Lower part transverse process C2	Not Mentioned	
				Caudal	Top of cricoid cartilage	Top of cricoid cartilage	Top of cricoid cartilage		
Caglar ²⁹ (2008)	96	М	IPC (mean dose, V50, V60)	Cranial	Pterygoid plates	Upper edge of hyoid bone	Inferior edge hyoid bone	Not Mentioned	
				Caudal	Upper edge of the hyoid bone	Lower edge of the hyoid bone	Lower edge cricoid		
Dirix ³⁰ (2009)	53	М	MPC (mean dose,V50)	Cranial	Caudal tip of the pterygoid plates	Upper edge of hyoid bone	Inferior edge hyoid bone	Lower edge cricoid	
				Caudal	Upper edge hyioid bone	Lower edge of the hyoid bone	Lower edge cricoid	Upper edge of trachea	
Bhide ³¹ (2009)	37	М	No correlations	Cranial	Base of the skull	Superior end of hyoid bone	Inferior edge hyoid bone	Not Mentioned	
				Caudal	Superior end hyoid bone	Caudal end of the cartilage cricoid	Lower edge cricoid		
Caudell ³⁶ (2010)	83	м	IPC (V60, V65)	Cranial	Pterygoid plates	Upper edge of hyoid bone	Inferior edge hyoid bone	Not Mentioned	
				Caudal	Upper edge of the hyoid bone	Lower edgem of the hyoid bone	Lower edge cricoid		
Mortensen ³² (2013)	65	М	SPC, MPC (mean dose)	Cranial	Caudal tip of the pterygoid plates	Upper edge of C3	First slice caudal to the lower edge of hyoid bone	First slice caudal to the arytenoid cartilages	
				Caudal	Lower edge of C2	Lower edge of hyoid bone	Lower edge of the arythenoid cartilages	Lower edge of the cricoid cartilages	

Studies assessing dose-volume analyses for late dysphagia

OP: Oropharynx NP: Nasopharynx PH: Pharynx M: Miscellaneous, PCs: All constrictors. C2: 2nd cervical vertebra, C3: 3th cervical vertebra, C4: 4th cervical vertebra, C5: 5th cervical vertebra, C6: 6th cervical vertebra

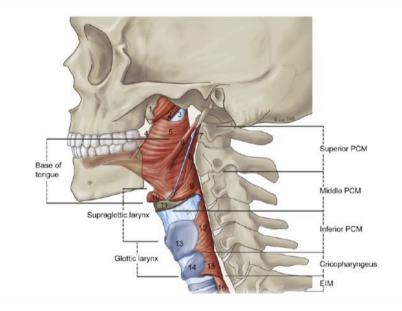
PCS: Pharyngeal constrictor muscle, SPC: Superior constrictor muscle, MPC: Middle constrictor muscle, SL: Supraglottic larynx, IPC: Inferior constrictor muscle, V50=volume of a structure receiving 50 Gy. V60=volume of a structure receiving 60 Gy. V65=volume of a structure receiving 65 Gy D60=minimum dose received by 60% of a structure. V70=volume of a structure receiving 70 Gy. Dmax: Dose maximum



Background

Delineation of organs at risk involved in swallowing for radiotherapy treatment planning

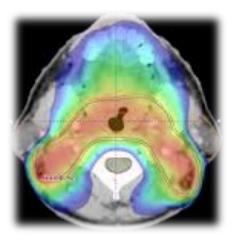
Miranda E.M.C. Christianen^a, Johannes A. Langendijk^{a,*}, Henriëtte E. Westerlaan^b, Tara A. van de Water^a, Hendrik P. Bijl^a


PCMs: Superior (Red); Middle (Light Blue); Inferior (Yellow); Cricopharyngeus (Dark Blue)

Muscle	Cranial	Caudal	Anterior	Posterior	Lateral	Medial
Superior PCM	Caudal tip of the pterygoid plates (hamulus)	Lower edge of C2	Hamulus of pterygoid plate; mandibula; base of tongue; pharyngeal lumen	Prevertebral muscle	Medial pterygoid muscle	Pharyngeal lumen
Middle PCM	Upper edge of C3	Lower edge of hyoid bone	Base of tongue; hyoid bone	Prevertebral muscle	Greater horn of hyoid bone	Pharyngeal lumen
Inferior PCM	First slice caudal to the lower edge of hyoid bone	Lower edge of the arythenoid cartilages	Soft tissue of supraglottic/glottic larynx	Prevertebral muscle	Superior horn of thyroid cartilage	Pharyngeal lumen
Cricopharyngeal muscle	First slice caudal to the arytenoid cartilages	Lower edge of the cricoid cartilages	Posterior edge of cricoid cartilage	Prevertebral muscle	Thyroid cartilage, fatty tissue, thyroid gland	

Study Design and Methods

Dose–Volume Analysis and observed incidence of acute and late dysphagia in HNC-IMRT after re-contouring of PCMs and cricopharyngeal muscle according to Christianen M.E. guidelines



On planning CT scan, the *PCs* and *cricopharyngeal muscles* were retrospectively contoured by a single observer and subsequently reviewed by another radiation oncologist

Patients and Treatment

Factors	Description				
Gender	Male	77% (n=43)			
Gender	Female	23% (n=13)			
Age	Median 64 y	Range[24 - 86]			
Smokers	Yes	77% (n=43)			
SHIOKEIS	No	23% (n=13)			
Diabetic	Yes	5% (n=3)			
Diabetic	No	95% (n=53)			
	Rinopharynx	9% (n=5)			
	Oropharynx	30% (n=17)			
Drimony Cito	Oral Cavity	18% (n=10)			
Primary Site	Larinx Sovraglottic	9% (n=5)			
	Larinx Glottic	30% (n=17)			
	Salivary Glands	4% (n=2)			
Histology	Epidemoidal	88% (n=49)			
Пасолову	Others	12%(n=7)			
R	G1	27% (n=15)			
Grading	G2	46% (n=26)			
	G3	27% (n=15)			
	1	20% (n=11)			
	П	12% (n=7)			
Stage	ш	18% (n=10)			
	IVA	46% (n=26)			
	IVB	4% (n=2)			
	Cisplatino weekly	20% (n=11)			
Chemiotherapy	Cisplatino 3-weekly	32% (n=18)			
chemiotherapy	Induction	2% (n=1)			
	None	46% (n=26)			
	None				
Radiotherapy	Radical	71% (n=40)			

Cisplatin 100 mg/m2 q21:

- ECOG PS 0-1
- Age ≤ 70 y
- Locally advanced

Cisplatin 30 mg/m2 qw:

- ECOG PS 2
- Age ≤ 70 y

Ospedale Sacro Cuore - Don Calabria

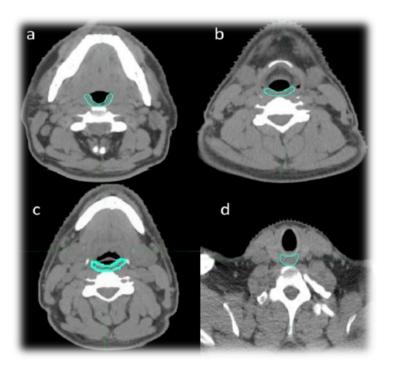
• Locally advanced

Radical setting:

- 70 Gy (33-35 fr) PTV(T)
- 59.94 63 Gy PTV(HR)
- 54.45 58.1 Gy PTV(LR)

Postoperative setting:

- 60 Gy Surgical Bed
- 54 Gy Nodes


Toxicity Evaluation

1) EORTC/RTOG radiation morbidity score system

2) No baseline dysphagia

3) Toxicity evaluation weekly during RT

Acute toxicity	within 90 days from RT
Late toxicity	after 90 days from RT

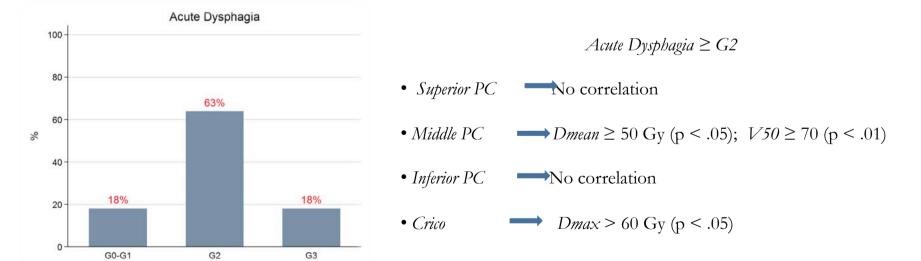
a-d: Definition of Constrictors and Cricopharyngeal muscles in axial CT planning slice

Dosimetric Parameters for each structure were related to acute and late toxicity

Results

Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment

^{1,2}R MAZZOLA, MD, ¹F RICCHETTI, MD, ¹A FIORENTINO, MD, ¹S FERSINO, MD, ¹N GIAJ LEVRA, MD, ¹S NACCARATO, MD, ¹G SICIGNANO, MD, ³S ALBANESE, MD, ⁴G DI PAOLA, PhD, ⁵D ALTERIO, MD, ¹R RUGGIERI, PhD and ¹F ALONGI, MD


Radiation Oncology, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy

²Radiation Oncology School, University of Palermo, Palermo, Italy

³Head and Neck Surgery, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy

⁴Statistic Science Faculty, University of Palermo, Palermo, Italy

⁵Radiation Oncology, European Oncology Institute (IEO), Milano, Italy

Results

Dose-volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment

^{1,2}R MAZZOLA, MD, ¹F RICCHETTI, MD, ¹A FIORENTINO, MD, ¹S FERSINO, MD, ¹N GIAJ LEVRA, MD, ¹S NACCARATO, MD, ¹G SICIGNANO, MD, ³S ALBANESE, MD, ⁴G DI PAOLA, PhD, ⁵D ALTERIO, MD, ¹R RUGGIERI, PhD and ¹F ALONGI, MD

¹Radiation Oncology, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
²Radiation Oncology School, University of Palermo, Palermo, Italy
³Head and Neck Surgery, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
⁴Statistic Science Faculty, University of Palermo, Palermo, Italy
⁵Radiation Oncology, European Oncology Institute (IEO), Milano, Italy

Late Dysphagia $\geq G2$

- Superior PC \longrightarrow Dmean $\geq 50 \text{ Gy} (p < .01); Dmax > 60 \text{ Gy} (p < .05); V50 \geq 70 (p < .01) [6-9 months]$
- Middle PC \longrightarrow Dmean $\ge 50 \text{ Gy} (p < .01); Dmax > 60 \text{ Gy} (p < .05); V50 \ge 70 (p < .01) [6 months]$
- Inferior PC —No correlation
- Crico \longrightarrow No correlation

No statistical correlation at 12 and 24 months

Correlation with clinical factors...

• Oropharynx primary site (p < .05) — tute/Late Dysphagia

• Late Xerostomia \geq G2 (p < .05) \longrightarrow Late Dysphagia \geq G2 (p < .05)

Organ sparing and clinical outcome with step-and-shoot IMRT for head and neck cancer: a mono-institutional experience

Rosario Mazzola · Giuseppe Ferrera · Filippo Alongi · Mariella Mannino · Boris Abbate · Teresa Cucchiara · Giuseppina Iacoviello · Francesco Sciumè · Gioacchino Di Paola · Manuela Federico · Livio Blasi · Antonio Lo Casto · Roberto Lagalla · Domenico Messana

Xerostomia causes alterations in speech/taste and difficulties in the swallowing process with strong correlation with dysphagia-related quality of life

Conclusion

Based on Christianen guidelines, dose constraints to superior and middle PCs seem to play a role as dosimetric predictors of acute/late swallowing disorders

Findings of the present study are influenced by several limitations

Associazione Italiana Radioterapia Oncologica Valutazione strumentale della disfagia tardiva in pazienti affetti da neoplasia del Rinofaringe e Orofaringe candidati a trattamento radiochemioterapico concomitante con tecnica IMRT

THANKS FOR ATTENTION!

