

Predictors of Mucositis in Oropharyngeal and Oral Cavity Cancer in patients treated with volumetric modulated radiation treatment: a Dose-Volume Analysis

Rosario Mazzola, MD

Radiation Oncology Department Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy Chair: Filippo Alongi, MD

Background

Concer Patient-reported Measurements of Oral Mucositis in Head and Neck Cancer Patients Treated With Radiotherapy With or Without Chemotherapy

Demonstration of Increased Frequency, Severity, Resistance to Palliation, and Impact on Quality of Life

Elting L.S. et al. Cancer, 2008

In 40-80% of patients undergoing radiotherapy and/or chemotherapy for head and neck cancer, mucositis affects quality of life and compliance to treatment.

- Site of disease (especially Oral Cavity and Oropharynx)
- Treated volume
- Total dose and Fractionation
- Overall treatment time
- Chemotherapy

* Dorr W et al. Int J Radiat Oncol Biol Phys, 2002 Trotti A et al. Radiother Oncol, 2003

Relation between mean mouth and throat soreness score (left vertical axis) and mean percentage decrease in quality of life score (right vertical axis) during RT

Factors related to RT:*

Background

Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: a planning study

Figure 1 Open distributions in a transmission to 1997 and 4941 parts of all participants institution. One controlled in a transmission in the participant processing institution of a transmission of the participant processing participant to the control part of part.

In the era of dose painting IMRT, it becomes crucial to spare healthy structures to improve the patient's QoL

		VMAT average ± 1 SD*	IMRT average ± 1 SD*	Average difference ± 1 SD* (VMAT – IMRT)	p-value (Wikcoxon's signed-rank test)/
PTV _{bane}	Class	1.37 ± 0.08	1.45 ± 0.11	-0.08 ± 0.09	.001
PTV	Oes	1.50 ± 0.09	1.62 ± 0.10	-0.12 ± 0.07	< .001
Normal timue	V _{scy} (cm ³)	5050 ± 750	\$089 ± 750	-30 ± 260	15.
	Vice (cm ³)	4050±630	3970±590	~80±160	FLS.
	V ₂₀₀₄ (cm ³)	2830 ± 510	2960 ± 480	30 ± 150	rus.
Spinal cord	Dem Kiyi	45.1 ± 35	46.6±30	-1.5 ± 2.3	.001
	Dra (Gyl	43.4 ± 3.7	44.4 = 3.5	09122	.005
	Director (Cy)	29.3 ± 4.4	298136	0.5 ± 24	na.
Brain stiens	Dres Kiyl	46.4 ± 5.4	47.1±4.7	Q7±46	ns.
	Dra (Gyl	43.8±5.8	440±55	-0.2 ± 4.9	rui.
	Dawn Eyl	13.6 ± 3.6	145143	-1.0 ± 3.4	ns.
Parotid gland ipsilateral	Vince (%)	42.9±15.6	50.3 ± 20.0	=7.4±140	< .001
	Venia (%)	30.0 ± 14.6	35.9 ± 18.6	-5.9±11.2	< .001
	Down Keyl	28.0 ± 75	31.1 ± 9.1	-3.1 ± 5.1	< .001
Parotid gland contralateral	Minor (M)	31.0 ± 7.3	34.5 ± 68	-3.5 ± 36	< .001
	Versily (N)	18.3±60	20.8 ± 6.1	9.5 ± 25	< .001
	Down (Cy)	22.0 ± 2.9	23.3 ± 2.8	-1.3 ± 1.5	< .001
Submandibular gland controlate al [®]	V21600 590	881±153	908 ± 13.5	-2.7 ± 6.9	ns.
	Verse (%)	16.4±21.4	21.8 ± 27.3	-5.5 ± 85	.020
	Down (Gy)	\$3.0±59	54,2 ± 6.1	A 5 ± 10	.027
Onal cavity	V2000 (%)	79.8±22.9	86.3 ± 15.7	-65 ± 10.7	.011
	V2164 (%)	40.6 ± 22.0	48.8 ± 23.3	-83-16A	,002
	Diment (Cyl)	36.7 ± / 8	39.4±7.3	-927 ± 28	< .001
Laryns	V100, (%)	75.4 ± 24.7	79.1 ± 21.6	-3.8 ± 6.7	.012
	Venue (%)	541 ± 27.4	582 x 26.5	-4.3 ± 93	na.
	Down Kird	45.5 = 5.3	46.5 ± 4.4	-1 <i>D</i> ±15	.004
Pharyngeal constrictors*	Versia (N)	78.7±245	815 ± 200	-2.8 ± 15.2	n.s.
	Veste (%)	59.7 ± 29.4	\$75±255	2,7 ± 19.9	ris.
	Dawn (Gyl	47.1 ± 5.3	46.9 ± 3.8	0.2 ± 2.7	0.5.
Mandible*	Viscy 862	74.0 ± 13.1	78.2 ± 11.8	-4.7 ± 8.4	,025
	Vering (M)	25.7 ± 15.0	30.1 ± 16.2	=4.4±5.1	< .001
	Dawn (Cy)	46.6 = 5.5	50.3 ± 5.7	-1.7 ± 1.7	< .001
Effective delivery time?	(minsed)	5:54 ± 1:05	12:15 = 1.38	-7.21 ± 155	< .001
MLK	-	643 ± 111	828 ± 149	-185 ± 129	<.001

Background

MUCOSITIS VERSUS TUMOR CONTROL: THE THERAPEUTIC INDEX OF ADDING CHEMOTHERAPY TO IRRADIATION OF HEAD AND NECK CANCER

IRWIN H. LEE, M.D., PH.D., AND AVRAHAM EISBRUCH, M.D.

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI

CONCLUSIONS

We estimate that the addition of concurrent chemotherapy to radiation for HNSCC increases the BED for mucositis by 8 Gy₁₀, corresponding to three or four additional 2-Gy fractions. This estimate is strongly dependent on the assumed relationship between BED and mucositis, but within the range

Study Design

The purpose of the present study was to analyze <u>Predictors of Acute Mucositis</u> in oropharyngeal and oral cavity cancers after VMAT +/- Chemotherapy

50 pts were selected according to Inclusion Criteria:

1) Age >18 years

2) Histologically proven carcinoma of the oropharynx and oral cavity

3) No dysphagia prior of RT

4) Radical and adjuvant treatment with VMAT (RapidArc - Varian Medical System-Palo Alto - CA)

Patients and Treatment

Ospedale Sacro Cuore - Don Calabria

	Factors	%	No. Patients
	Oral Cavity	50	25
Site of disease	Oropharynx	50	25
-	T1	10	5
T	T2	34	17
1-stage	T3	18	9
	T4	38	19
	None	18	9
Neck nodes positive	Unilateral	26	13
	Bilateral	56	28
	IA		
	Unilateral	12	6
	Bilateral	28	14
	IB		
	Unilateral	26	13
	Bilateral	56	28
	II		
Level nodal	Bilateral	82	41
irradiation	III		
	Bilateral	82	41
	IV		
	Bilateral	82	41
	V		
	Unilateral	26	13
	Bilateral	56	28
Radiation	Definitive	50	25
Treatment	Adjuvant	50	25
	Cisplatin - weekly	20	13
Chemo	Cisplatin - 3-weekly	40	20
	None	40	20

Radical setting:

- 70 Gy (33-35 fr) PTV(T)
- 59.94 63 Gy PTV(HR)
- 54.45 58.1 Gy PTV(LR)

Postoperative setting:

- 60 Gy Surgical Bed
- 54 Gy Nodes

Cisplatin 100 mg/m2 q21:

- ECOG PS 0-1
- Age ≤ 70 y
- Locally advanced

Cisplatin 30 mg/m2 qw:

- ECOG PS 2
- Age ≤ 70 y
- Locally advanced

Methods

CT-Planning

Limits

- Superiorly: Hard Palate
- Inferiorly: Cricoid Cartilage
- Anteriorly: Buccal Mucosa around the teeth
- **Posteriorly:** The posterior pharyngeal wall

Oral Mucosa minus target PTVs

Mucositis Evaluation

1) EORTC/RTOG radiation morbidity score system

2) Weekly transoral inspection of the oral cavity and the visualized oropharynx

3) No endoscopy to score the degree of mucositis

4) Observer-assessed dysphagia was used as a surrogate for pharyngeal mucositis

Observer-assessed acute swallowing symptoms (such as burning, dysphagia, and pain) were a surrogate of pharyngeal mucositis extension*

Results

ORIGINAL ARTICLE

Predictors of mucositis in oropharyngeal and oral cavity cancer in patients treated with volumetric modulated radiation treatment: A dose-volume analysis

Rosario Mazzola, MD*² Francesco Ricchetti, MD* Sergio Fersino, MD* Alba Fiorentino, MD* Niccolò Giaj Levra, MD* Gioacchino Di Paola, MS* Ruggero Ruggieri, PhD* Filippo Alongi, MD**

¹Department of Radiation Oncology, Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy, ²Department of Radiation Oncology School, University of Palermo, Palermo, Italy, ³Statistic Sciences Faculty, University of Palermo, Palermo, Italy.

Parameters	Dose Constraints	
THOMAN	Mean dose ≥ 50	
Total Oral Mucosa	$Dmax \ge 65$	
	V45 Gy > 40 %	
Oral Mucosa minus target planning target volumes	V50 Gy > 30 %	
	V55 Gy > 20 %	

New proposed Oral Mucosa dose constraints Predictors of Mucositis ≥ G2 (RTOG/EORTC)

HEAD NECK

Æ

Ø

g

GIWHER'

Results

Risk of grade ≥ 2 Mucositis according to EORTC/RTOG scale after Oral Mucosa Re-contouring

Variable	P-value	(95% CI)	Odds Ratio	% Risk		
Concomitant	0.006	01-12	5	50 %		
Chemotherapy	0.000	0.1 1.2		50 70		
Total OM:						
$Dmean \geq 50$ and	0.02 - 0.04	0.1 - 1.3	3.75	38 - 40%		
$Dmax \ge 65$						
Ratio total OM/						
OM out of PTVs:	0.03	0.8 - 1.8	2.6	35%		
≥ 2.5						
OM out of PTVs:	0.04 0.000					
V45 > 40, V50 >	0.04 - 0.009 -	0.5 - 2.3	4.85	8 -22%		
<i>30, V55>20</i>	0.003					
Abbreviations: OM=Oral Mucosa; CI=confidence interval; PTVs=planning target volumes; Dmean=mean dose; Dmax=maximum dose; V45=volume % of oral mucosa exposed to at least 45 Gy; V50=volume % of oral mucosa exposed to at least 50 Gy; V55=volume % of oral mucosa exposed to at least 50 Gy;						
dose; V45=volume % of oral mucosa exposed to at least 45 Gy; V50=volume % of oral mucosa exposed to at least 50 Gy; V55=volume % of oral mucosa exposed to at least 55 Gy						

Conclusions

New Constraints were found, useful for clinical practice

The parameters analyzed were used to develop a multivariate Model Predicting Moderate-Severe Mucositis

It is necessary to validate clinical application in prospective analyses

THANKS FOR ATTENTION!

