

Il trattamento associato radiochemioterapico nel tumore polmonare localmente avanzato

Pina Apicella

SCDU di Radioterapia Azienda Ospedaliero-Universitaria "Maggiore della Carità", Novara RAO

VIII CONGRESSO AIRO GIOVANI

I TRATTAMENTI MULTIMODALI IN ONCOLOGIA

IMPLICAZIONI CLINICHE PER IL RADIO-ONCOLOGO Claudia, 53 y Heavy smoker, BPCO R×→ CT FBS + BAL + CT guided byopsy

Adenocarcinoma G3 EGFR wild type

Staged as M1b (?!) CT CDDP + Gem q21 5 cycles G4 haematologyc toxicity

post CT FDG PET : no change!!

What's the best option for C.?

Combining Chemo and Radiation Therapy

Sequential vs Concomitant CT-RT

	PRO	AGAINST
SEQUENTIAL	Safe delivery full dose CT	 Accelerated repopulation Emerging radioresistance Delayed delivery RT
CONCOMITANT	 No delay in RT delivery Decreased tumour ripopulation Possible radiosensibilization 	Increased acute toxicity

Sequential vs Concomitant CT-RT

Timing for combining RT-CT

What radiotherapy dose in combination with chemotherapy? Dose escalation

Bradley 2015

Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study

Dose escalation

Bradley 2015

What's the best option for C.?

Altered Fractionation Radiation Therapy

"Patients with stage III NSCLC treated with accelerated HFX RT with or without chemotherapy may have better freedom from local progression and survival compared with those receiving standard RT, especially non–squamous-cell carcinoma"

RT ALONE

Altered fractionation and and Dose-Escalation

RTOG 8311 1.2 Gy x 2/daily

(Cox 1990)

CTV doses of 60 Gy, 64.8 Gy, and 69.6 Gy, 74.4-Gy and 79.2-Gy. The best arm received 69.6 Gy in 6.5 weeks (2-year survival rate of 29% p = .02)

EORC CHART 1.5 Gy x 2/daily

(Saunders 1999)

CTV2 = 37.5 Gy in 25 fractions

CTV1= boost 16.5 Gy in 11 fractions, for a total dose of 54 Gy

Better OS (20% vs 13% @2y and 20% vs 13% @3y) and LC (17% vs 12%) CHART cfr to standard RT G2-3 dysphagia 49% of CHART vs 19% standard No significant difference in late complications > Improvement SCC-82% (OS @3y 21% vs 11%)

Hypofractionation

34 pts Phase I: upfr followed I	ont chemorac	diation (weekly consolidation	<pre>concurrent c hypofx chem</pre>	locetaxel and notherapy	cisplatin)
Dose Parameter, Gy	I	Ш	ш	IV	V
TD	60	63.6	67.2	70.8	74.4
FD	2.00	2.12	2.24	2:36	2.48
BED	64.8	69.9	75.1	80.3	85.7
				Bral	l, 2 010

HypoRT +/-"cutting edge technology" +/- protons....

Dose escalation 3 Hypofx dose levels

Toxicity

✓ 45 Gy(RBE) in 3-Gy(RBE)
✓ 52.5 Gy(RBE) in 3.5-Gy(RBE)
✓ 60 Gy(RBE) in 4-Gy (RBE) 15 fx

25 pts

Grade	Dermatitis	Pneumonitis	Esophagitis	Fatigue
Grade 0	18	7	15	10
Grade 1	6	13	0	6
Grade 2	1	4	9	9
Grade ≥3	0	1	1	0

Gomez 2013, phase I

Target	Current Dose-Volume Constraints for Standard Fractionated Regimens at our Institution (2-Gy Fractions to 60-74 Gy)	Dose-Volume Constraints in Current Study [BED dose assuming α/β=3 with 15-fraction regimen)
Total Lung	V ₂₀ <40% Mean Lung Γ → <20 Gy	V ₁₇ <40% Mean Lung Dose <17.5 Gy(RBE) [17.1 Gy(RBE)]
Liver	40%	40% <40 Gy(RBE) [38.9 Gy(RBE)]
Kidneys (both)	new s	1/3 <18 Gy(RBE) [17.1 Gy(RBE)]
Esophagus	20% SU Chedule	20% <55 Gy(RBE) [52.65 Gy(RBE)] 50% <40 Gy(RBE) [38.9 Gy(RBE)]
Heart	50% <30 Gy 40% <40 Gy	50% <25 Gy(RBE) [24.6 Gy(RBE)] 40% <32 Gy(RBE) [31.9 Gy(RBE)]
Spinal Cord	Maximum dose 45 Gy	Maximum dose 36 Gy(RBE) [35.4 Gy(RBE)]
Brachial Plexus	Maximum dose <60 Gy	Dose to <1 cm ³ must not exceed 50 Gy(RBE) [45.6 Gy(RBE)]

Cutting edge technology + protons....

Comparison of dose-volume histograms between proton beam and X-ray conformal radiotherapy for locally advanced non-small-cell lung cancer

criteria: $V5 \ge 42\%$, $V20 \ge 25\%$, mean lung dose ≥ 20 Gy. The mean normal lung dose and V5 to V50 were significantly lower in PBT than in XCRT. The differences were greater with the more advanced nodal status and with the larger CTV. Furthermore, 45.7% of the X-ray plans were classified as inadequate according to the criteria, whereas 17.1% of the proton plans were considered unsuitable. The number of inadequate X-ray plans increased in cases with advanced nodal stage. This study indicated that some patients who cannot receive photon radiotherapy may be able to be treated using PBT.

Ohno, 2015

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Ongoing research on Proton Therapy

EGFR TKI combined with Radiotehapy +/- *chemotherapy*

	PHASE	ΡZ	STAGE	DOSE RT	Chemo	Toxicity ≥ G3	mPFS (mth)	LC	mOS (mts)
Stinchcombe 2008	Ι	23	Ш	74	CT RT CT conc q7	9% Arytmia 19% Esophagytis	9	24%	16
Choong 2008	II	17 vs 17	111	66	Erlotinib + RT + CDDP&Etoposide or Carbo& Paclitaxel	3% Pneumonitis 26% Esophagytis	9	38%	11&15
Center 2010	I	16	Ш	70	Docetaxel+Gefitinib + RT	20% Pneumonitis 27% Esophagytic	7	46%	21
Ready 2010	II	21 PR 39 GR	111	66	CT/TKI inductio + RT/TKI +/- chemo + TKI maintenance	nical trial!	J.2 13.4	5%CR 48% & 76% PR 38% 1% SD 5% PD	13 19
Rothschild 2011	I	14	ш	63	sonide a cl	1 G2 polmonite	6	21.4%	12.7
Komaki 2012	11	46	ш	NIC	OUTScaxel +Erlotinib + RT	?	14.5	80%	34
Okamoto 2011	I	9	III A/B		NO CHEMO	1 G2 Esophagytis 1 G3 Pneumonitis	14 (4.5-73)	4/4	NR
Wang 2011	11	26	III/IV	70 (42-82)	NO CHEMO	Grade 3 Esophagytis 4% Grade 3 Pneumonitis 4%	10	96%	30% 3 y
Chang 2011	11	25	IIIb-IV	40-50 Hypofx	NO CHEMO	2 G3	16	84%	62% 3 y
Niho 2012	I	23/37	Ш	60	NO CHEMO	1 G2 Pneumonitis 1 G3 Pneumonitis	11	73%	65% 2 y
Zhang 2013	I	45	III-IV	54-60	NO CHEMO	1 G3 (nausea)	5.9	11 PR 23 SD 11 PD	NR
Zhuang 2014	Ι	24	III – IV	46-66	NO CHEMO	4 G2 2 G3 3 G5	Median FU 31 (7-48)	NE	NE

Clinical Target Volumes

ISOLATED NODAL RECURRENCE from INVOLVED FILED RADIOTHERAPY

Belderbos, Int J Radiat Oncol Biol Phys 2006	PET	67	3%
De Ruysscher, Int J Radiat Oncol Biol Phys 2005	PET	44	2%
Fernandes, Radiother and Oncology 2010	PET	48	4.3%
Sulman, Radiation Oncology 2009	PET	115	1,7%
Fleckenstein, Int J Radiat Oncol Biol Phys 2011	PET	33	4%
Bradley, Int J Radiat Oncol Biol Phys 2012	PET	47	2%

ELSEVIER	Seminars in RADIATION ONCOLOGY
Intensity-Modulated Radiotherapy, Not 3	CrossMark
Dimensional Conformal, Is the Preferred	1.15
Technique for Treating Locally Advanced	
Lung Cancer	
Joe Y. Chang, MD, PhD	

Interplay effects can be minimized with **motion management techniques**

Doesn't compromise local-regional control if radical $\underline{\textbf{doses are used}}$

Seems (?) to **improve quality of life** (less pneumonitis and esophagitis)

Dose escalation (on anatomical, biological, and molecular volumes) by **<u>SIB</u>** without prolonging treatment time

Chang, 2015

FDG-PET Adapted RT

RTOG 1106: randomized phase II trial of individualized adaptive radiotherapy using during-treatment FDG PET/CT and modern technology in locally advanced NSCLC

Structure Name	Description	Dose covering 95% volume	
CT1PT1CTV	CT1PT1GTV+5mm	60 Gy or above	46.2 Gy in 2.2 Gy /die
CT1PT1PTV	CT1PT1CTV+5mm	50 Gy or above	PET/CT based boost
CT2PTV	PTV based on CT2GTV	70 Gy or above**	18/19 Fx of 2.2-3.8 Gy/die
PT2PTV	PT2GTV+5mm	Up to 80.4 Gy	

Gomez, 2011

- ✓Post-CT 5 cycles
- ✓ Radiotherapy alone
- √60 Gy
- ✓ Standard fractionation 2/die
- **√IMRT**
- ✓No motion management
- ✓ Acute toxicity: dysfphagya G2

So many questions ... too much answers

Se in quell'istante avesse fatto in tempo a dire in modo lucido e consapevole a se stesso: "Sì, per questo attimo si può dare tutta la vita!", allora quell'istante sarebbe senz'altro valso un'intera vita.

"L'idiota" Fedor Dostoevskij