Progress in radiation oncology:
is there a role for radiobiology?
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Two main eras in radiation oncology:
differences in dose delivery

DELIVERY IN TIME (1980’s — 1990’s): fractionation and overall

time. From NSD to Linear-Quadratic formulas.

« Emphasis on fractionation — notably hyperfractionation as a
result of the radiobiological studies showing a low o/ value
for late responding critical organs, a high o/ for most tumors

and early mucosal effects = increased therapeutic ratio
when lowering the dose per fraction.

DELIVERY IN SPACE ( =2000): High precision radiotherapy

Towards hypofractionation and SBRT
Rapid developments in imaging technologies combined with high
tech radiotherapy — IMRT + cone beam CT, Tomotherapy, Rapid Arc,
VMAT, Cyberknife, MR-Linac, revival of Hadron therapy (protons, C*
ions), etc.

» Hypofractionation: based on increasing knowledge of low o/ for
tumors such as prostate and breast

The era of high precision radiotherapy:
potential contributions by (clinical) radiobiology

Hypofractionation

 Validity of LQ model — does it hold >8-10 Gy/fx
SBRT (very high doses)

« EQD,/BED —irrelevant. Hypoxia?

 Increased importance of vascular effects?

» Volume effects (EUD ?, DVH?, stem cell regions?)

« Enhanced immune response?
IGRT — MR/Linac - ViewRay

» Metabolic & functional imaging (CT, PET, MR)
Protons & light-ions

« Has a proton RBE>1.1 measured in vitro clinical

relevance?
» RBE of C+-ions in relevant tissues and tumors




The era of high precision radiotherapy:
potential contributions by (clinical) radiobiology

Combined modalities
« Classic chemo: still the main stay of a few agents
» molecular inhibitors — many agents are tested, but so
far little clinical impact
« metabolic inhibitors - many options with available
agents

Dose-volume effects: critical observations

« Parallel & serial organs: the concept was important
for modeling, but does not represent real organs

» Heterogeneous dose distributions are increasingly
delivered:

» Most late responding normal tissues show
complex dose-volume relationships

« Relatively low doses may have a big impact on
the tolerance of a high dose volume (IMRT)

« Steep dose gradients may impact normal tissue
tolerance (SBRT)

» Dose-volume-histograms (DVH): a
clinical/physics convenience but the existence of
heterogeneous tissue sensitivities and
potentially critical regions are ignored (e.g.,stem-
cell niches)




Impact of low dose to large volume on tolerance

of high dose target:

High precision protons on rat spinal cord: bath & shower
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High precision partial volume irradiation of normal tissues:
proton irradiation of rat spinal cord

", - Irradiating decreasing
b // lengths of rat cord shows a
4mm 2mm steep rise in tolerance

/. dose: migration of stem

/ cells?

20 mm

8 mm




Heterogeneous dose-distributions in lateral
direction across the rat spinal cord

High precision partial volume irradiation of normal tissues:
proton irradiation of rat spinal cord

Heterogeneous dose-distributions in lateral direction
shQuing large differences in sensitivity
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Heterogeneous response of “parallel’organs: lung
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Travis EL et al. Int J Radiat Oncol Biol Phys.;38:1045-54 (1997)

High precision partial volume irradiation of normal
tissues: rat lung

Coppes, van Luijk, et al,
150 MeV proton irradiation
at the KVI in Groningen, NL

25%, 12-28 Gy 50%, 10-22 Gy 63%, 10-17 Gy

i

88%, 10-15 Gy 100%, 10-13 Gy




Interaction between organs: heart & lung
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Interaction between organs: heart & lung
(UMC Groningen)

Heart irradiation Lung irradiation

Pulmonary vascular
remodeling

Cardiac damage / Pulmonary
perivascular fibrosis hypertension

Left ventricle diastolic dysfunction

Classical signs of radiation pneumonitis:
Dyspnea, Inflammation, Fibrosis

Ghobadi et al. JROBP 2012




Impact of irradiation of different subvolumes of
rat parotid gland on function

High-precision proton irradiation
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Heterogeneous response of “parallel’organs:
critical regions in the parotid gland
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If the parotid gland is a
parallel organ, the
functional deficit should
be proportional to the
inactivated tissue

Studies in rat parotid
gland showed an

enhanced response
when a small central
region was included

P. van Luijk et al. Sci. Transl. Med. 7, 305ra147 (2015)




New potential for IMRT: conformal avoidance of stem

cell reglqns Parotid gland:

UMC Groningen

Brain stem cell
region:
hippocampus
(Mehta et al,
ASTRO 2013)

* 95% of brain receives 30 Gy/10 fx
* Hippocampal avoidance volume 10 Gy

* RTOG 0933: reducing the radiation dose
to the stem-cell niches surrounding the
hippocampus during treatment was
clearly associated with memory
preservation

High precision small animal irradiators:
Small animal radiotherapy (SmART)

Radiation Capabilities:
— X-ray energies from 0-225 kVp
— Dose rates from 0-3 Gy/min
— Beam sizes from 1-10 mm
— Short treatment scans from 5-8 minutes
— 10 cm8 FOV

SmART
collimators SmART interior

From: Prof. Frank Verhaegen — MAASTRO Clinic — Maastricht, NL




SmART-Plan: Contouring

*| Structures

From: Prof. Frank Verhaegen — MAASTRO Clinic — Maastricht, NL

SBRT & high single doses: enhanced vascular damage?
Studies on the radiation-induced influx of CD11b monocytes
(J.Martin Brown lab, Stanford University)

Vasculogenesis
CD11b Monocytes Blood vessel forming cells from bone marrow Qo

oh °CXCR4 ?XCR7
‘e . ~d>

stromal cell-derived fa

(SDF-1) also known as CXCL12 A

In radiotherapy the
vasculature of tumors is an
“achilles heel”, but only if
vascular rescue by the bone A & Brown
marrow is prevented Cancer Cel, 2008




Inhibition of SDF-1 following irradiation produces
complete responses in ENU-induced gliomas
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