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Cancer and Immune System

Tissue changes during neoplastic transformation are
sensed by innate immune system

Interferon y —a mediator
of immunosorvellance
against tumors - is

produced by
to promote cytotoxic
activity of macrophages.

Cancer and Immune System

Tissue changes during neoplastic transformation are
sensed by innate immune system

The cytocidal activity of
innate immune cells leads to
the release of TAA for cross
presentation to DC




Cancer and Immune System

DC process the antigens into
peptides that can be
recognised by CD8 and CD4 T

cells: 2>

Cancer and Immune System

between proliferation and killing of tumor cells by T cells.

Vol 450|6 December 2007 |d0i:10.1038 /nature06309 nature

Adaptive immunity maintains occult cancer in an
equilibrium state

Catherine M. Koebel', William Vermi'?, Jeremy B. Swann™*, Nadeen Zerafa®, Scott J. Rodig’, Lloyd J. Old®,
Mark J. Smyth™** & Robert D. Schreiber'*




Cancer and Immune System

Tumor cells continue to engage the immune system,
which can still slow down the tumor progression

Oncogene (2010) 29, 1093-1102
© 2010 Macmillan Publishers Limited Al rights reserved 0950

www.nature.com/onc
REVIEW
Immune infiltration in human tumors: a prognostic factor that
should not be ignored

F Pagés">**, J Galon'**, M-C Dieu-Nosjean®***, E Tartour?, C Sautés-Fridman®*
and W-H Fridman>**>

Cancer and Immune System

Opportunity to recover effective immune
reactivity:

e Radiotherapy may promote the release of
tumor neoantigens in an immunogenic

way
» Strategies to overcome dominant
immonosoppressive pathways




Radiation and Immune System

Low-doses systemic RT High-doses local RT

Alkypreie Feremakpukis Editorial Int Journal of Radiat Oncol Biol Phys 2012

oy it f‘m el Ld Radiation Therapy to Convert the Tumor Into an
T,-"T.Ld Jody [rradiatio In Situ Vaccine

Silvia C. Formenti, MD,* and Sandra Demaria, MD

Departments of *Radiation Oncology, and 'Pathology, New York University School of Medicine and NYU Langone Medical
Center, New York, New York
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Bleakley & Riddell, Nature Rev Canc 2004
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Radiation and Immune System

Stereotactic Ablative RT
(SABR) immunogenic
potential > conventional
RT?
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Tumor Rejection by the immune system as the “5th R” of radiobiology

The “4 R’s” of radiobiology

1.  Redestribution of cells into Effects caused:
radiosensitive phases of the e directly with a
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Radiation and Immune System

Immune Response Background
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Radiation and Immune System

Radiation-induced tumor cell death
<>
priming of antitumor T-cell response

1. Cell death is an efficient process to transfer
antigens from tumor cells to DC
—> activation of tumor-specific T cells

2. Signals for achieving an “immonogenic cell death”:
- Cell surface translocation of calreticulin
- Extracellular release of high mobility group
protein B1 (HMGB1)
- Release of ATP

Radiation and Immune System

The relationship between Radiotherapy and the
Immune system can explain 3 clinical scenarios:

1. Effect of local control on survival

2.Success of concurrent chemo-radiation vs.
sequential chemotherapy and radiation

3.Abscopal effect




Radiation and Immune System

1. Effect of local control on survival.

Two metaanalyses of randomized trials in breast cancer demonstrated a
direct contribution of adjuvant radiotherapy to patients’ long-term
survival.

- Successful immunization against the primary tumor once residual
microscopic disease at the tumor bed and involved nodes is irradiated.

- Immune memory would reject early systemic recurrences

- Improved recurrence-free survival could reflect a return to the
phase between tumor and immune system of the host.

Radiation and Immune System

2. Success of concurrent chemo-radiation
vs. sequential chemotherapy and
radiation

- Both local control AND systemic control are higher with
concurrent treatments.

- Radiation and chemical agents may complement each other in
fulfilling the requirements for each of the three molecular signals
of immunogenic cell death.




Radiation and Immune System
3. Abscopal effect.

Pre-treatment

Post-treatment

The “vaccine role” of RT may induce the abscopal effect
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Why Abscopal effect is so rare?

. A highly suppressive tumor microenvironment
: the more immonogenic antigens are alreadey lost.
. Cancer cells release immunosuppressive cytokines (TGF-B)

. Cancer cells express surface receptors with inhibitory function for T
cells: programmed death ligand-1

. CDAT cells with regulatory funtion (Treg) inhibit tumor rejection by
direct contact with effector t cells and by secretion of
immunosuppressive cytokines.

. Radiation has been shown to promote :
- ™ TGF-B

- Treg are more radio resistant and can increase after radiation

Abscopal effect.

Radiotherapy may induce an immune-mediated
abscopal effect only when has the ability to alter
the preexisting immunosuppressive tumor
environment with pro-immunogenic effects
prevailing over immunosuppressive effects.




Preclinical Combinations of Radiation

and Immunotherapy

Table 1. Combinations of immunotherapy and local radiotherapy tested in preclinical tumor models*
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Combination of Local Radiotherapy and

TLR7 agonist

DC activation and
pro-inflammatory
| cytokines production
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229 DC
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Decreased / Cyclophosphamid

suppression \ \/Q
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Combination of Local Radiotherapy with anti-
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Sharabi A. et al.,J Rad Onc, 2013




Combination of Local Radiotherapy with anti-
Programmed-Dead Receptor 1

Radiation induces tumor infiltrating
lymphocytes (TIL)

B16-OVA XRT+aPD1
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Preclinical Combinations of Radiation
and Immunotherapy

Radiation combined with anti-PD-1 A HNS HOPKINS
immunotherapy improves local tumor control
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Combination of Local Radiotherapy with checkpoint

receptor blockade

B block of
T cell CTLA-4 T cell T-cell
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Clinical Combinations of Radiation and
Immunotherapy

Table 1  Examples of successful immune-mediated tumor rejection after treatment with radiation therapy and CTLA-4 checkpoint
blockade: Treatment and target specifications

Reference Radiation regimen CTLA-4 antibody dose Tumor type Targeted site Setting
Dewan et al (8 6 Gy x 5 and 10 mg/kg Breast cancer Primary tumor Preclinical

8 Gy x 3 (9H-10)
Hiniker et al (9) 18 Gy x 3 3 mg/kg Melanoma Liver metastases Clinical
Postow et al (4) 9.5Gy x 3 10 mg/kg Melanoma Paraspinal Clinical
metastasis

Golden et al (5) 6 Gy x5 3 mg/kg Lung cancer Liver metastasis Clinical




F'he NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Immunologic Correlates of the Abscopal
Effect in a Patient with Melanoma
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An Abscopal Response to Radiation and Ipilimumab in a
Patient with Metastatic Non-Small Cell Lung Cancer

Encouse B. Golden’', Sandra Demaria’%, Peter B. Schiff', Abraham Chachoua®, and Silvia C. Formenti’

Volume 5 Number 6 December 2012 pp. 404-407 404

www.transonc.com

Susan M. Hiniker*, Daniel S. ChenT, Sunil ReddyT,
Daniel T. Chang*, Jennifer C. Jones*,

Joseph A. MollickT, Susan M. Swetter¥

and Susan J. Knox*

*Department of Radiation Oncology, Stanford University
School of Medicine, Stanford, CA; "Department of Medical
Oncology, Stanford University School of Medicine, Stanford,
CA; *Department of Dermatology, Stanford University
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Clinical Combinations of Radiation and
Immunotherapy

RT combination with: Triall tumor site accrual

FIt3L Proof of principle abscopal trial
(Demaria et al., Int J Radiat Oncol Biol Phys, 2004) (met disease a" SiteS)
NYU 02-58

anti-CTLA-4 (vemaris et a1, cin cancer res  Ipilimumab —RT randomized 12/48

2005; Matsumura et al., J Immunol 2008; Pilones et al.,
Clin Cancer Res 2009; Dewan et al., Clin Cancer Res M et m e' anoma
2009; Ruocco et al.,, J Clin Invest 2012) S12-02746

18/29
Ipilimumab -RT
Met NSCLC trial
S14-00208

TLR7'agon|St (Dewan et al. Clin Cancer Res ImIQUImOd‘RT trial
e NCT01421017

anti-TGFB Fresolimumab-RT Randomized 24/24
(Bouguet et al Clin Cancer Res 2012) NCT01421017

EV\U Sght‘)ol‘olf Medicine
7 Ipilimumab versus placebo after radiotherapy in patients

with metastatic castration-resistant prostate cancer that
had progressed after docetaxel chemotherapy (CA184-043):
a multicentre, randomised, double-blind, phase 3 trial

Eugene D Kwon, Charles G Drake, Howard | Scher, Karim Fizazi, Alberto Bossi, Alfons | M van den Eertwegh, Michael Krainer, Nadine Hovede
Ricardo Santos, Hakim Mahammedi, Siobhan Ng, Michele Maio, Fabio A Franke, Santhanam Sundar, Neeraj Agarwal, Andries M Bergman
Tudor E Ciuleanu, Ernesto Korbenfeld, Lisa Sengelav, Steinbjorn Hansen, Christopher Logothetis, Tomasz M Beer, M Brent McHenry, Paul Gagnier,
David Liv, Winald R Gerritsen, for the CA184-043 Investigators™

All patients received a single dose of radiotherapy of
8 Gy for at least one, and up to five, bone fields, at the
investigator's  discretion. This single-administered -
radiation dose (8 Gy in one treatment fraction) was Slte bone mets
previously shown to be therapeutically equivalent to a
fractionated regimen (30 Gy in ten treatment fractions
over 2 weeks) with respect to pain palliation.” Radio- . . .
therapy was done some time within the 2 days before Dose . 8 Gy, Slngle fraCtIOn
initiation of the study drug regimen, and palliative
radiotherapy was allowed for any bone lesion while on
study. Sites of radiotherapy included the arm, leg, pelvis, Tlme RT Wlthln 2 days from
spine, rib, and skull. We did not assess the efficacy of the . )
radiotherapy with respect to pain palliation or lesional IPI’ then anyt|me dunng IPI
regression as part of the study, because it was given to
stimulate immune response. Until database lock,
investigators assessing disease progression (including by
radiographic assessment) remained masked to treatment
allocation.




o

\NYU School of Medicine

NYU LANGONE MEDICAL CENTER

Study failed to meet its main endpoint

Study powered to detect a 4 month difference in median overall
survival (15.8 versus 12 months)
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Figure 4: Progression-free survival in the intention-to-treat population

At 6 months 30.7% versus 18.1%




Clinical Combinations of Radiation and
Immunotherapy

Many questions remain:

* Optimal site to irradiate in metastatic

disease

Patient selection

Sequencing of RT/Immunotherapy
RT dose and fractionation

Best combination

Potential predictive role of immune biomarkers in SABR treatment?

ClinicalTrials.gov

Monitoring Anti-Prostate Cancer Immunity Following Stereotactic Body Radiotherapy (SBRT)

A service of the U.S. National Institutes of Health This study is currently recruiting participants. (see Contacts and Locations) ClinicalTrials.gov Identifier:

Patients enrollment
* < 6 metastatic lesions
(diagnosis torugh FDG-PET/CT)
e controlled loco-regional
disease
* no brain metastases

[ .
$

Diagnosis %

¢ October 2012-February 2014:

Verified January 2013 by Mayo Clinic NCT01777802

First received: January 24, 2013
Last updated: January 28, 2013
Last verified: January 2013
Information provided by (Responsible Party): History of Changes

Sean S. Park, Mayo Clinic

Sponsor:
Mayo Clinic

* Phase Il clinical trial employing SABR for oligometastatic breast cancer patients
* To evaluate SABR effects on anti-tumorimmune response

Study design

SABR treatment Follow up
* 30 Gy / each lesion Possible concurrent treatments:
* 3 daily fractions ¢ hormonal treatment and/or
(10 Gy/fraction) ¢ chemotherapy
‘ ‘ ‘ e steroids

¢ Trastuzumab

24h after the - 1 month‘ 4 months -
first fraction after SABR after SABR
Immunomonitoring

10 evaluable patients with tumor control 6 months after SABR




Enhanced survivin-specific CD8+ T-cell responses 1 month after SABR
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Induction of polyfunctional HER2-specific CD8+ T cell responses after SABR
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Differential modulation of T-cell responses after SABR
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¢ 5/10 patients showed the
enhancement or even the
appearance of anti-tumor
polyfunctional T cells
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Possible correlation
with clinical response?

Thank you for your attention!

marco.trovo@cro.it




