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Start with clinical data

Table 1 Overview of disease entities and indications in which concurrent chemoradiotherapy is used.?

Disease entity Indication and treatment Commonly used agents Benefit

Upper aerodigestive tract cancers

Head and neck cancer Locally advanced HNC— Cisplatin, 5-FU, FHX, Improved organ preservation and survival
primary or adjuvant treatment cetuximab compared with radiation alone

Non-small-cell lung cancer Stage IlIB, nonoperable Cisplatin, carboplatin/ Curative app h in poor surgical
nonmetastatic disease paclitaxel, cisplatin/etoposid candid: or B di

Small-cell lung cancer Limited stage disease Cisplatin/etoposide Curative in ~209% of patients

Esophageal cancer Locally advanced disease Cisplatin/5-FU Survival benefit, increased cure rates,

organ preservation

Gastrointestinal malignancies

Rectal cancer Neoadjuvant 5-FU Improved sphincter preservation, decrease
in local and distal failures
Anal cancer Mainstay of curative treatment 5-FU, MMC Improved organ preservation
Gastric cancer Adjuvant Cisplatin, 5-FU Some data indicate a survival benefit
Pancreatic cancer Adjuvant, unresectable 5-FU Improved locoregional control, possibly a
locoregionally advanced tumors survival benefit
Cholangiocarcinoma Adjuvant, unresectable 5-FU Some data indicate a survival benefit
locoregionally advanced tumors
Gynecological and genitourinary cancers
Cervical cancer Primary modality Cisplatin, 5-FU, hydroxyurea Improved local and distal control,
organ preservation
Bladder cancer Primary modality Cisplatin Improved local control
Other cancers
Glioblastoma Adjuvant Temozolomide Survival benefit
Sarcoma Neoadjuvant Doxorubicin Downstaging, improved organ preservation
*This is a limited overview, and cf verapy s used in most solid tumors either as a ally. For further details please

or
refer to the orgar 5-FU, & FHX, 5-FU, hy and HNC, head and neck cancer; MMC, mitomycin C.
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Combine Chemotherapy with Radiotherapy
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Spatial Cooperation

* Definition: describe the scenario whereby RT acts loco regionally, and CHT acts
against distant micro metastases, without interaction between the agents.
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Temporal Modulation

* The aim of this approach is to enhance the tumor response to fractionated
radiotherapy.

* The four R’s of radiotherapy:

1. Repair — DNA damage repair

2. Repopulation — cellular repopulation or proliferation
3. Reoxygenation — reoxygenation of hypoxic tumor cells
4., Redistribution — redistribution to more sensitive

phases of the cell cycle

For example: radioenhancing drugs in this context could function by inhibiting repair
taking place between dose fractions.

Normal tissue protection

The therapeutic Ratio

W Tumour Control o
Probabilit Toxicities Normal
Q " Tissue
=)
(O]
+—
©
o
(]
wn
S Therapeutic Index l
o
0
& /
o

>

Radiation dose (Gy)




Biological Cooperation

Definition: this is the second of the mechanisms of radiosensitization
and refers to strategies that:

WTarget distinct cell populations
W Employ different mechanisms for cell killing
W Delaying tumor regrowth

N.B: the cells targeted are not necessarily the malignant cells only

Biological Cooperation:
Anti-VEGF/VEGFR
Targeting non-Tumour Cells
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SOURCE: Adapted by permission from Macmillan Publishers Ltd: Nature Medicine (Jain RK.

Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combina-

tion therapy. Nai Med 2001;7(9):987-9), copyright 2001, No abstract available




Cytotoxic Enhancement

Definition: combined-modality treatment seek to determine the
combination of therapies that leads to an interaction on some level that
generates an improved antitumor effect relative to each treatment alone

O Exacerbation of DNA Damage
L Inhibition of DNA Repair

Q Cell Cycle Effects
 Enhanced Apoptosis

L Targeted Radiosensitizers

Platinum Drugs and Radiotherapy

Cytotoxicity of Cisplatin: reacts with cellular DNA to form interstrand and
intrastrand cross-links.
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Platinum Drugs and Radiotherapy

Mechanism of Radiosensitization by Cisplatinum

*RT induces free radicals and the subsequent formation of toxic platinum
intermediates, which increase cell killing

*|lonizing radiation can increase cellular uptake of platinum

*Damage to DNA by ionizing radiation, which would normally be reparable, can
become fixed and lethal through cisplatin’s free electron— scavenging capacity. The
integration of cisplatin into DNA or RNA in close proximity to a radiation-induced
single-strand break can act synergistically to make the defect significantly more
difficult to repair.

Cisplatin adduct Radiation-induced Cisplatin and radiation-
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Platinum Drugs and Radiotherapy

Schedules are important: the best results are achieved by using low doses of the two agents
and cisplatinum before RT.

DOSE:

- Radiosensitization of murine embryonicfibroblasts (MEF) cells was shown at 1 pg/mL of cisplatin, but an increasein
concentrationdid not increasein radiosensitization but instead increased radioresistance [Myint, W.Examining the non-
homologous repair process following cisplatin and radiation treatments. Int J Radiat Biol 2002.]

- When OV-1063 and EMT-6 cell lines were preirradiated with 2 Gy, addition of the drug produced a clear additional effect
but this was almost totally eliminated when cells were irradiated with a higher dose (6 Gy). [Gorodetsky, R. Combination of
cisplatin and radiation in cell culture: Effect of duration of exposure to drug and timing of irradiation. Int J Cancer 2006]

TIME:

-In two cell lines (EMT-6 and OV-1063) cells, a 2-h preirradiation drug exposure resultedin a supra-additive combined effect,
whereas a 24-h preirradiation exposure or protracted postirradiation exposure yielded an additive or slightly subadditive
response[Gorodetsky, R. Combination of cisplatin and radiation in cell culture: Effect of duration of exposure to drug and timing of
irradiation. IntJ Cancer 1998]

-In experimentaltumors, the greatest dose-enhancement factors were observed when cisplatin was administered
immediately before a daily fraction of radiation [Myint, W.Examining the non-homologous repair process following cisplatin and
radiation treatments. Int J Radiat Biol 2002]




Temozolomide e Radiotherapy

Temozolomide (TMZ) is an oral alkylating agent used as a first-line
treatment for Glioblastoma Multiforme

Radiotherapy plus Concomitant
and Adjuvant Temozolomide for Glioblastoma
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Temozolomide: radiosensitizer or additive
effect?

* High doses of TMZ seem to have greater radiosensitizing potential and to interact
with radiation at earlier time points. [Caporali, S.] and increased apoptosis when
high-dose TMZ was given 2 h pre-radiation was also observed [Chakravarti, A] =
independent of Mismatch Repairing futile cycling.

* At clinically TMZ concentrations (10 uM) it seems unlikely that TMZ directly
induces DSB: the interaction with radiation is frequently additive rather than
synergistic, and cellular sensitivity to TMZ is predictive of the effect of combination
treatment




BIOLOGY CONTRIBUTION

CYTOTOXIC EFFECTS OF TEMOZOLOMIDE AND RADIATION ARE ADDITIVE- AND
SCHEDULE-DEPENDENT

ANTHONY J. Ciiarmers, FR.C.R., Pi.D.,*' ELuor M. Rurr, M.D.," Ciiristive MaRTINDALE, B.Sc.,*
Nabia LoveGrove, B.Sc.,! axp Susan C. Snort, FR.C.R., Pu.D.
From the * Brighton and Sussex Medical School, and ' Genome Damage and Stability Centre, University of Sussex, Falmer, UK:  Royal

Sussex County Hospital, Eastern Road, Brighton, UK; and *UCL Cancer Institute, Paul O'Gorman Building, University College
London, London, UK
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Temozolomide-Mediated Radiation Enhancement in Glioblastoma:

A Report on Underlying Mechanisms

Arnab Chakravarti,' Michael G. Erkkinen,’ Ulf Nestler,' Roger Stupp,® Minesh Mehta,* Ken Aldape,®
Mark R. Gilbert,® Peter McL. Black,? and Jay S. Loeffler’
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Targeted Therapies and Radiotherapy

Start with clinical

data

[ Radiotherapy + cetuximab
S Radiotherapy alone
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0.2 1 From Bonner, J. et al., Lancet Oncology
11:21-28, 2010
0 T T T T T T 1
0 10 20 30 40 50 60 70
Months
Number at risk
Radiotherapy + 211 177 136 117 105 90 49
cetuximab
Radiotherapy alone 213 162 122 98 85 77 49
Other cancers
Glioblastoma Adjuvant Temozolomide Survival benefit
Sarcoma Neoadjuvant Doxorubicin Downstaging, improved organ preservation

*This Is a limited overview, and concurrent chemoradiotherapy s used in most solid tumors either as a standard treatment or investigationally. For further details please

refer to the organ- A 5-FU, 5-Mt

FHX, 5-FU, hydroxyurea and radiation; HNC, head and neck cancer; MMC, mitomycin C.




Epidermal Grown Factor Receptor (EGFR)
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Chong CR1, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer.
Nat Med. 2013 Nov;19(11):1389-400.
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Radiation-induced Epidermal Growth Factor Receptor Nuclear
Import Is Linked to Activation of DINA-dependent Protein Kinase™
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Radiation stimulates the pathways activated by epidermal
growth factor (EGFR) and in addition can the translocation of
phosphorylated EGFR (pEGFR) into the nucleus.

Result in increased repair of DNA strand
breaks - DNApK, Ku 70 e Ku 80

Radiation-induced Epidermal Growth Factor Receptor Nuclear
Import Is Linked to Activation of DINA-dependent Protein Kinase™

June 17, 2005
.M506591200

Received for publication,
Published, JBC Papers in Press, July 5, 2005, DOI 10.1074/jt

Klaus Dittmanni§, Claus Mayer#, Birgit Fehrenbacherl, Martin Schallerl, Uma Rajul,
Luka Milasl, David J. Chen**, Rainer Kehlbachii, and H. Peter Rodemannt

From the tDivision of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology,
University of Tubingen, 72076 Tubingen, 1Department of Dermatology, University of Tibingen, 72076 Tubingen,
Germany, \Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center,
Houston, Texas 77030, **Division of Molecular Radiation Biology, Department of Radiation Oncology, Utah Southwestern
Medical Center, Dallas, Texas 75390-9187, and tiDepartment of Radiology, University of Tibingen,

72076 Tubingen, Germany

A wild type EGFR

Radiation
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Radiation-induced Epidermal Growth Factor Receptor Nuclear
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TABLE 10.2 Small-Molecule Inhibitors of EGFR Tyrosine Kinase in Clinical Use That Have Shown Radiosensitizing Capability

Agent

Molecule

Specificity

Status

Radiosensitization

Gelfitinib (Astra Zeneca)

Erlotinib (Genentech,
OSIP, Roche)

Lapatinib
(GlaxoSmithKline)

BMS599626, AC480
Bristol Myers Squibb

AEE788 (Novartis)

Pelitinib/ EKB-569
(Wyeth)

Canertinib/ci-1033
(Pfizer)

BIBW 2992 (Boehringer
Ingeheim)

Anilinoquinazoline,
reversible TKI
(half-life 48 h)

Anilinoquinazoline,
reversible TKI
(half-life 36 h)

6-Thiazolyl-

quinazoline,
reversible TKI
(half-life 24 h)

4-Amino-
pyrrolotriazine,
reversible TKI

Pyrrolopyramidine

3-Cyanogquinoline

Amniloguinazoline

(a) Reversible Inhibitors

HERI1

HER1

HER1/2

HER1/2/4

HERI1/2
VEGFR2

(b) Irreversible Inhibitors

HERI1/2

HER1/2/4

Herl/2

FDA approved
NSCLC

FDA approved
NSCLC,
pancreatic cancer

Approved (breast
cancer)

Phase I clinical
trials

Phase II clinical
trials

1/11

GBM line U251 expresses high levels of EGFR, and is
hypersensitive to inhibition of the EGFR signaling
pathway. Gelfitinib enhanced radiosensitivity, maximal
effectiveness of combined treatments was dose-dependent
and time-dependent [44]

Radiosensitizing effect of erlotinib, was evaluated in three
human cancer cell lines with different levels of HER1/
EGFR expression. Extent of radiosensitization was
proportional to HER1/EGFR expression, and to
autophosphorylation of EGFR (HER1) [45]

Lapatinib combined with fractionated radiotherapy caused
tumor growth inhibition in xenografted EGFR™ and
HER2" breast cancers. Inhibition of downstream signaling
to ERK1/2 and AKT correlates with sensitization in
EGFR* and HER2* cells, respectively [46]

AC480 significantly enhanced the radiosensitivity of HN-5
cells, expressing both EGFR and Her2. Mechanisms
included cell cycle redistribution and inhibition of DINA
repair [51]

Combined treatment effective in vitro/fin vivo with DU145
prostate cancer model whereas PC-3 adequately treated
with XRT alone. Correlated with differences in EGFR
expression and showed effects on cell proliferation and
wvascular destruction [47]

EKB-569 radiosensitizes squamous cell carcinoma in
vitro. Mechanism involves selective targeting of
IR-induced NFkB-dependent survival signaling [48]

Caco-2 and LoVo cells, with high levels of EGFR and
ErbB2 TK activity, were affected by CI-1033, SW6&20
cells, with low levels were not. Whereas CI-1033
produced only minimal radiosensitization in LoVo and
Caco-2 cells in vitro, the combination caused prolonged
suppression of tumor growth in both tumor types
compared with either treatment alone [49]

BIBW 2669 and BIBW 2992 had clear antiproliferative
effects in vitro and in vivo, but cellular radiosensitization
was minimal. There was an effect of combined treatment
on tumor growth delay in vivo cancer treatment [50]




Radiotherapy and hormonotherapy

Start to clinical data

TABLE 51-15

DMF
bNED Survival css os
Trial Arms Medlan Follow-up 5 yr 10yr 6yr 10yr S5yr 10yr Syr 10yr
RTOG 85-31  I: RT + goserelin (ndefinitely) 7.6 yr (11 yr IMng)  62% 31% 85% 76% O1% 84% 76% 49%
aasil II: RT alone 44% 23% 7% 61% 87% 78% 71% 39%
p <.0001 p <.0001 p = .0052 p = .002
EORTC 22863 |: RT + 3 yr GnRH 91y 76% 38% 90% 51% 94% 89% 78% 58%
=415 II: RT alone 45% 18% 71% 30% 79% 69% 62% 40%
p <.0001 p <.0001 p =.001 p =.0004
RTOG 86-10 I: 4 mo TAS + RT 87y (11.9yriving) 36% 35% 66% 65% 85% 283% 73% 43%
=43 II: RT alone 73y 15% 20% 50% 53% 80% 36% 71% 34%
p <.0001 p =.006 p=.01 p=.12
TROG 96.01 I: RT alone 59y 38% — 81% NS 91% NS — —
P=81% II: 3 mo TAS + RT 52% —  78% NS 9% NS @ — —
i 6 mo TAS + RT 56% —_ 87% — 94% —_ — —
p =.002 (3 mo) p=.046 p=.040
p <.001 (6 mo) (6 mo) (6 mo)

bNED, biochemical no evidence of disease: DMF, disease/metastasis free; CSS, cause-specific survival: NS, not specified; OS, overall survival.




Combine Hormonotherapy with Radiotherapy
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Neoadjuvant ADT: downsizing
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Anticancer Res. 2015 Jul 35(7):3875-84.
Protective Effect of Leuprorelin on Radiation-induced Intestinal Toxicity.

Livi L.
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Combine Hormonotherapy with Radiotherapy
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Biological effects of ADT and Radiotherapy

* The majority of cells are dependent on
Androgen Receptor activation 100, & ae e

* ADT decreases hypoxia

Probability of local tumor control

* ADT promotes apoptosis

Androgen Withdrawal in Patients Reduces Prostate Cancer Hypoxia:
Implications for Disease Progression and Radiation Response
Michael Milosevic,” Peter Chung,” Chris Parker,” Robert Bristow, " Ants Toi,”

Tony Panzarella,” Padraig Warde,” Charles Catton,” Cynthia Menard,"”
Andrew Bayley,” Mary Gospodarowicz,” and Richard Hill"*
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Figura 1. Postireatment versus pretreatment marginal mean prostate cancer
PO levels in 22 pabenls, Dark poinds, signiicant (P = 0.001) changes in
oxygenation with androgen withdeawal; bars, SEs. The line of unity is also
shown,




Combine Hormonotherapy with Radiotherapy
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Research

No supra-additive effects of goserelin and radiotherapy on
clonogenic survival of prostate carcinoma cells in vitro
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Antagonistic Interaction Between Bicalutamide' ™

(Casodex ") and Radiation in Androgen-Positive
Prostate Cancer LNCaP Cells
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BIOLOGY CONTRIBUTION

THE EARLY SUPRA-ADDITIVE APOPTOTIC RESPONSE OF R3327-G
PROSTATE TUMORS TO ANDROGEN ABLATION AND RADIATION IS NOT
SUSTAINED WITH MULTIPLE FRACTIONS
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Combine Hormonotherapy with Radiotherapy

 Spatial cooperation
* Normal tissue protection

XX

* Biological cooperation
» Cytotoxic enhancement
* Temporal modulation

Certainly Addictive...maybe
Superadditive...but...new molecules... Bentez SM 2007

Prostate Cancer 2015

Oligorecurrentand SBRT Radium-223 (immunotherapy)

/

>% @ Ipilimumab versus placebo after radiotherapy in patients
with metastatic castration-resistant prostate cancer that

had progressed after docetaxel chemotherapy (CA184-043):
“
Advanced Prostate Cancer ( CaStra amulticentre, randomised, double-blind, phase 3 trial

RT+ADT

Tumour Volume & Activity

Asymptomatic Symptomatic

Taxotere Enzalutamide

Abiratereone
...still Medical Oncology... Cabaxitaxel

Abiratereone




Androgen Receptor Signaling |
Regulates DNA Repair in

B
Prostate Cancers ® Gene _Pesk _Loga
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Radiotherapy and Immunotherapy:
new radiobiology

Immunoediting theory

Equilibrium e—— Elimination
Adaptive immunity Increased MHC class 1
Persistent 10lerogenic antigen Persistent tolerogenic antigen Increased antigen ~anety
Decreased antigen quantity/vanety Innate and adaptive immunity (TLRs, DAMPS)
Increased number of MOSCs Increased costemulatory molecules
Increased inhibitory cytokines and kgands Increased antigen presentaton

antigen presentation

Immunotherapy




Mechanism of Action of Immunotherapies

Monoclonal Antibodies

Cytokine-mAb
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CANCER IMMUNOTHERAPY: FUNDAMENTAL CONCEPTS AND EMERGING

Old-ldea...

...New concept!

....commonly it was thought that radiation therapy exerted
immunosuppressive effects....

..... the true relationship between radiation and the immune system is
certainly more complex, and it appears that irradiation would be more
immunomodulatory rather than only immunosuppressive.




Abscopal Effect

The term “abscopal”, deriving from the latin ab (away from) and the ancient Greek skopos (target) was
introduced in 1953 (Mole RH et al.) to describe a rare phenomenon in which the effects of RT are seen
outside of the treated area (distant Bystander).

In 2012 two case reports (Postow MA, et al. Stamell EF et al.) highlighted the immunoadjuvant effect of RT
in melanoma, which was classically thought to be an immunogenic tumor

Ipilimumab
|

OO T Tl i T
su:u. s.-m‘l-ln i !ano-u! Stable !;

T
Aug. Sept.  Dec. Nov. Dec. Jan. Aprit oct
2009

2000 2009 2010 2010 2011 2011 2011 Postow MA et al. N EnglJ Med 2012;366:925-931.

Abscopal effect:
How RT counters Immune evasion

¢ Antigen quantity, variety and presentation: in vitro and in vivo mouse studies indicate that tumor
irradiation exposes this complex antigenic environment by generating new peptides and increasing the
pool of intracellular peptides for cross-presentation (Reits EA, et al. Sharma A, et al). RT augments
MHC-I expression (Zeng J et al).

* Bridging innate and adaptive immunity: RT causes dying tumor cells to release high mobility group box
1 (HMGB-1), a well-described “danger signal” that binds TLR4 . Tumor antigen processing and
presentation on MHC-I molecules is dependent on the HMGB-1/TLR4 interaction. This suggests a link
between innate and adaptive responses (Apetoh et al)

* Inducing a T cell response: The most recent and promising immunotherapeutics shift the tumor
microenvironment in favor of T cell activation by blocking negative inhibitory molecules (CTLA4, PD-1)
(Drew M. Pardoll).




Abscopal Effect
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ClinicalTrials.gov

Ongoing trials studying combination RT and immunotherapy

Disease site

Phase

Design Primary RT Treatment timing
identifier measure
NCT01449279 Melanoma 1 arm: ipilimumab 1 Safety Ipilimumab Palliative RT <2 days after
(advanced) prior to palliative RT ipilimumab
NCT01689974 Melanoma 2 arms, randomized: 2 Tumor response Ipilimumab 30 Gy in 5 fractions RT starts 4 days
(advanced) ipilimumab prior to RT prior to ipilimumab
or ipilimumab alone
NCT01557114 Melanoma 1 arm: ipilimumab 1 Maximum tolerated Ipilimumab 9, 15, 18, 24 Gy RT from week 4
(advanced) prior to RT dose in 3 fractions to week 10 of ipilimumab
NCT01565837 Melanoma 1 arm: ipilimumab 2 Safety, tolerability Ipilimumab SRT to 1-5 lesions RT after first dose of
(advanced) prior to SRT ipilimumab, before week 6
NCT01497808 Melanoma 1 arm: SRT 1/2 Dose-limiting Ipilimumab SAT to 1 lesion RT prior to ipilimumab
(advanced) prior to ipilimumab toxicity
NCTO0861614 Prostate 2 arms, randomized: 3 Overall survival Ipilimumab Not specified RT prior to ipilimumab
(castrate resistant) RT prior to ipilimumab
vs. RT alone
NCT01347034 Soft tissue sarcomas 2 arms, nonrandomized: 2 Immune response Autologous dendritic cell Conventional RT Dendritic cell injection
RT alone vs. RT plus intraturmoral injection with boost during RT
dendritic cell therapy,
then surgery
NCT01421017 Breast cancer 1 arm: imiquimod 1/2 Tumor response Topical imiquimod 600 cGy in 5 fractions Imiquimod starts
with skin metastases to all skin metastases evening of first RT
plus RT to select skin
metastases
NCT00751270 Supratentorial 1 arm: surgical resection 1 Safety; immune Adv-tk injection Standard of care Start RT 3 days after
malignant glioma with Adv-tk injection, response into tumor bed Adv-tk injection, during
followed by pro-drug prodrug therapy
(valacyclovir) and RT
NCT01595321 Pancreatic cancer 1 arm: cyclophosphamide, 1 Toxicity Low-dose 6.6 Gy in 5 fractions Start RT <12 weeks
following resection vaccine, SRT, and cyclophosphamide following operation and
(stage RO) FOLFIRINOX and vaccine 7-14 days after first
vaccine dose
NCT01436968 Prostate cancer, 2 arms, double-blind, 3 Disease-free Adv-tk intraprostate Standard EBRT Adv-tk prior to,
localized, intermediate randomized: Adv-tk vs. survival injection immediately prior to,
or high risk placebo followed by and during EBRT
valacyclovir; EBRT with
or without androgen
deprivation therapy
Aciv-tk, us-m herpes virus thymidine kinase; EBRT, external beam RT.




Conclusion (1)

* Oncology has increasingly become a multidisciplinary field of
medicine: in the past 20 years there has been an explosion of
preclinical and clinical efforts to combine therapies for improved

outcomes.
» Researchers have learned a great deal about the interactions between
CHT and IR from clinical trials.

* Laboratory investigations demonstrated key molecular targets and
pathways that can potentially be exploited for improved outcomes.

Conclusion(2)

* The combination of chemotherapy and irradiation has changed the
management approach in several neoplasms

* Radio-hormone-therapy is the standard of care for local treatment in
prostate cancer

* New hormone therapy + IR in prostate cancer!

* The next future is radio-immunotherapy....
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Current Status and Recommendations for the Future

of Research, Teaching, and Testing in the Biological
Sciences of Radiation Oncology: Report of the American
Society for Radiation Oncology Cancer Biology/Radiation
Biology Task Force, Executive Summary

e Although the ability to deliver higher and more accurate doses
of radiation has advanced the treatment of many cancers,
maximizing further improvements in the outcome of cancer
patients treated with radiation therapy will likely not depend
on_technological improvements in dose delivery, but instead
will depend on advances in understanding and using the effect
of radiation as a potent modulator of genetic and cellular
activity.

Grazie per l'attenzione!




