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How to improve therapeutic gain?

+ Total dose and fractionation

* New technologies: improvements in instrumentation,machine
software and diagnostic techniques enabling more accurate dose delivery
to the tumour while minimizing dose to surrounding healthy tissue

L + Protons and other ions

+ Biological response modifiers for normal tissues
* Chemotherapy
* Targeted therapy
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Chemotherapy

« Concomitant chemotherapy is largely used and probably
represents the mostimportant change in our clinical practice
during the last decades

“ Only in a relatively small proportion of patientsis chemotherapy
sufficiently effective to destroy subclinical metastatic deposits

* Normal tissue toxicity is frequently increased after combined
radiochemotherapy, which may limit doses of drugs or radiation
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Chemotherapy

Currently available chemotherapeutic
drugs are far from being perfect for
combining with Radiotherapy
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Cancer stem cells: CSCs

e (CSCs are small subpopulations of all tumor cells

¢ (Capacity to selfrenew

e (apacity to generate the heterogenous lineages of cancer cells that comprise
the tumour

e Anticancer therapy can cure a tumor only if all cancer stem cells are killed

e (SCs may be resistant subset of tumor cells, while nontumorigenic cells
constitute bulk of tumor cells

e Radiotherapy is efficient to kill CSCs, much more than CTx

e Only combinations which enhance radiotherapy killing of CSCs have better
curative potential

e Inthe context of radiotherapy a CSC translates into a cell which has the capacity

to cause a recurrence
Clarke et al., Cancer Res 66: 9339-9344, 2006
Baumann et al., Nature Rev Cancer 545-554, 2008
Krause M. et al, Clin Cancer Res; 17(23) December 1, 2011
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Krause M. et al, Clin Cancer Res; 17(23) December 1, 2011

Radiotherapy (RTx)

Permanent local High risk of
tumor control Az

* Pretreatment CSC number Low High

+ CSC increase during fractionated Low High

RTx (repopulation capacity)
* |ntrinsic radioresistance of CSC Low High
+ Tumor micromilieu Oxic Hypoxic
Development of biomarkers

Targeting for combined treatment approaches
with radiotherapy

@ 2011 American Association for Cancar Research
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Krause M. et al, Clin Cancer Res; 17(23) December 1, 2011




DAMP = exogenous PAMP (LPS)
+
endogenous alarmins (HMGB-1, Hyaluronan, HSP) lonizing Radiation

TIRAP = Mal
TRIF = TICAM-1
TRAM = TIRP = TICAM-2

Inflammatory cytokines
Anti-microbial peptides IFN-inducible genes

Gabriele Multhoff and Jiirgen Radons, Frontiers in oncology - 2012
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Need for new scenarios

More effective and less toxic
substances are needed to further
improve the results of systemic
therapies combined with radiation

The best targeted therapy

Attractive tar
the context o

ets for drugs
%radiother%%y

A “perfedi” targeted drug for radioth_eragy ma%/ hfave no impact on the survival of
cancer cells when IV%I"I without irradiatjon, but effectively decreases mechanisms of
radiation resistancg, thereby improving local tumour control.

to be used specifi

& Wgul%i be(Over)expressed in a high proportion of tumours frequently treated by
radiation

*  Would be not expressed by normal tissues surrounding the tumour
*  Would be linked to poor locoregional tumour control after radiotherapy alone

*  Would ideally be associated with known radiobiological mechanisms of tumour
radioresistance

Krause M. et al., 2006
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Clinical trials

combining radiosensitising drugs with radiotherapy

Hy poxic Modifiers Nimorazole Head and Neck (SCC) Phase 3’
Tirapazamine Head and Meck (S0C) Phase 3
Cervical Phase 3
SCLCa Phase 2
NSCLCa Phase 1
TH-302 - Pending
Metformin NSCLCa Phase 2
CNS Phase 1
VEGF inhibition Bevacizumab Glioblastoma Mulitforme Phase 3
Pancreas Phase 2
MSCLCa Phase 2
Prostate Phase 2
Rectum Phase 2
Head and Meck (SCC) Phase 2
Endometrial Phase 2
Sarcoma Phase 2
Cerpical Phase 2
Oesophagus/GOJ Phase 2
Nasopharyngeal Phase 2
Cediranib Rectum Phase 1

Cancer Treatment Reviews 41 (2015) 105-113




Clinical trials

combining radiosensitising drugs with radiotherapy

PI3K inhibition BEM120 Lung Phase 1
CNS Phase 1
mTOR inhibition Everolimus Prostate Phase 1
Head and Meck (SCC) Phase 1
CNS Phase 1/2
Cervical Phase 1
MNSCLCa Phase 1
Temsirolimus NSCLCa Phase 1
CMNS Phase 2
Prostate Phase 1
Rapamycin Rectum Phase 1/2
AKT inhibition Nelfinavir Pancreas Phase 1
Cervical Phase 1
NSCLCa Phase 1/2
Oligometastases Phase 2
Pancreas Phase 2/3
CNS Phase 1

Cancer Treatment Reviews 41 (2015) 105-113

Clinical trials

combining radiosensitising drugs with radiotherapy

MEK inhibiton AZDG244 NSCLCa Phase 1
Rectum Phase 1

Trametinib Rectum Phase 1

c-MET inhibition Ficlatuzumab Head and Meck (SCC) Phase 1
PARP inhibition Olaparib Breast Phase 1
Head and Neck (SCC) Phase 1

Oesophagus Phase 1

NSCLCa Phase 1

Veliparib Rectum Phase 1

Breast Phase 1

Iniparib Brain mets Phase 1

ATR inhibition AZDGTIE Any Phase 1
CTLA-4 blockade Ipilimumab Prostate Phase 3
Melanoma Phase 2

NSCLCa Phase 2

Liver Phase 2

Lymphoma Phase 2

Brain metastases Phase 2

Head and Meck (SCC) Phase 1

Tremelimumab Pancreas Phase 1

PD-1 blockade Pembrolizumab Any Phase 1
AMP-224 Colorectal Phase 1

PDL-1 blockade MEDI47 36 Pancreas Phase 1

Cancer Treatment Reviews 41 (2015) 105-113




EGFR inhibition

Clinical trials

combining radiosensitising drugs with radiotherapy

Cetuximab Head and Neck (SCC) Phase 3™
[ . FlldsE 3
Oesophagus Phase 3
Pancreatic Phase 2
Nasopharyngeal Phase 2
Colorectal Phase 2
Anal Phase 2
CNS Phase 2
Cervical Phase 2
Gastric Phase 2
Panitumumab Head and Neck (SCC) Phase 3
Rectal Phase 2
Anus Phase 2
Cervical Phase 2
Oesophagus Phase 2
Fancreatic Phase 2
Cefitinib MNSCLCa Phase 3
CNS Phase 1/2
Desophagus/GO)J Phase 2
Head and Meck (SCC) Phase 2
Gastric Phase 1/2
Pancreas Phase 1/2
Prostate Phase 2
Erlotinib Pancreas Phase 2/3
Head and Meck (SCC) Phase 3
MSCLCa Phase 3
Desophagus/GO)J Phase 3
Oesophagus Phase 3
MNSCLCa Brain mets Phase 3
Rectum Phase 1/2
CNS Phase 2
Skin SOC Phase 2
Cervical Phase 1

Cancer Treatment Reviews 41 (2015) 105-113

Cetuximab

Radictherapy plus cetuximab
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Cetuxima
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—— Radiotherapy alone
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Integrin Inhibition

Cilengitide combined with standard treatment for patients
with newly diagnosed glioblastoma with methylated MGMT
promoter (CENTRIC EORTC 26071-22072 study):

a multicentre, randomised, open-label, phase 3 trial

_ Control »
| remaroniee Mt it ereou
Radiotherapy
4— Maximum & weeks ————p
MGMT —— >
cycles
MGMT not methylated ﬂmmmﬂmmmﬂ
or undetermined Radiotherapy
Mot eligible for study enrolment
Concomitant phase Adjuvant (maintenance) phase

Lancet Oncol 2014; 15: 1100-08




Cilengitide Control group
group (n=272) (n=273)

Number of events 144 138
Median overall survival (months) 26-32 2632
(95% Cl) 22.8-23.8 23.9-347
1004 HR (952 CI) 1.02 (0.81-129)
904 pvalue 0-86

Overall survival (%)
g
!

104 — Cilengitide group
— Control group
o T T T T T T T T T T T T T T T 1
0 3 6 0 12 15 18 21 24 27 30 3 36 39 42 45 48
Months Cilengitide control
group (n=272) group (n=273)
Number of events 197 192
100 Median progression-free survival (months)  10-6 7-9
90 (95% C1) 82-13.4 L0125
20 HR (95% Cl) 092 (0.75-112)

pvalue 041

Progression-free survival (%)
[}
=1
1

— Cilengitide group
104 — control group
U T T T T T T T T T T T T T T 1
Lancet Oncol 2014; 15: 1100-08 0 3 6 9 12 15 18 21 24 ¥ 30 233 36 39 42 45

Maonths
Interpretation The addition of cilengitide to temozolomide chemoradiotherapy did not improve outcomes; cilengitide

will not be further developed as an anticancer drug. Nevertheless, integrins remain a potential treatment target for
glioblastoma.

Tumour specific T-
cell

[ ﬁMHC ITCR Qm 'RIL .CTLM :]m«azn 'PDL—I l PD-1 \‘rfucrw : aPD-1 ﬁr'umu]

Synergistic interaction between ionizing radiation and immune checkpoint
blockade in inducing an immune response

The abscopal effect refers to the ability of radiation delivered to a local site to
minimize or eradicate metastases at distant sites.




Schematic diagram outlining the antitumor activity and abscopal effect in combining

checkpoint inhibitors with radiation-induced immune response
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Laboratory

The initial evaluation is typically performed on cells in culture

# Endpoints include: inhibition of cell proliferation, and colony formation after
irradiation with and without drug.

# It should be kept in mind that effects in vitro do not necessarily translate into the
same effect in vivo.

# Typical problems are that

*  higher drug concentrations can be achieved in vitro than in vivo,

* the expression of target molecules may be different in vitro and in vivo,
# cell culture conditions may significantly influence cell survival
%k

many microenvironmental factors which are present in tumours (e.g.
hypoxia, low pH, cell-cell interactions) are usually not reflected in cell culture

No practical alternative to initially screening molecular-targeted drugs combined with radiation
using in vitro models
Krause et al., 2006




Laboratory

Experiments on tumour models in vivo

It is important to discriminate volume-dependent endpoints such as tumour regression or
tumour growth delay from local tumour control.

# Cancer stem cells, constitute only a small proportion of all cancer cells, whereas the bulk
of tumour cells are non-tumourigenic

* Changes in tumour volume after therapy are governed by the changes in the mass of
tumour cells, that is primarily by the non-stem cells.

# Tumour control is dependent on the complete inactivation of the subpopulation of cancer
stem cells

Basic clinical radiobiology, IV edition

Laboratory

Moreover

* The majority of current preclinical studies in cancer research use volume-
dependent endpoints.

* Substantial risk that new treatments may be optimized for their effect
on the bulk of non-stem cancer cells, with no improvement in the
curative potential.

* Several studies have shown a dissociation of tumour volume dependent
endpoints and tumour control

Basic clinical radiobiology, IV edition




Laboratory

Moreover

# Radiotherapy-specific preclinical research strategies need to be applied to tes cacy
of molecular targeted drugs combined with radiation and that cancer stem-cell specific
endpoints such as local tumour control should be used whenever possible

* Today’s laboratory mass screening of candidate anticancer drugs is usually done in the
absence of radiotherapy. Thus, candidate compounds that are not effective alone, but
could be promising for radiosensitising tumour cells, will not be selected.
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Basic clinical radiobiology, IV edition

Conclusion

* Previous trials combining drugs with radiotherapy
have failed to live up to expectations:

* unacceptable side effects
*# lack of reliable predictive biomarkers

* failure to select the most appropriate patients for
clinical studies.

* Biomarker development should begin with pre-clinical
testing of the compounds and be explored in the
earliest clinical studies.




Conclusion

In the future, the combination of more accurate and complete

* molecular diagnostic methods

* development of a wider range of radiosensitising treatment options
(drugs, antibodies or genetic manipulation, targeted to a range of
pathways affecting the radiation response), will allow treatments
tailored to the individual, maximizing tumour cell kill and minimizing
normal tissue damage

An experience

JNCIJ Natl Cancer Inst, 2015, 1-11

doir10.1093/jnci/djus19
OXFORD First published online February 6, 2015

ARTICLE -
Simultaneous B1 Integrin-EGFR Targeting and
Radiosensitization of Human Head and Neck Cancer

Iris Eke, Katja Zscheppang, Ellen Dickreuter, Linda Hickmann,
Ercole Mazzeo, Kristian Unger, Mechthild Krause, Nils Cordes
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JOINT MEETING
1* ADVANCED AIRB COURSE IN RADIOBIOLOGY
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