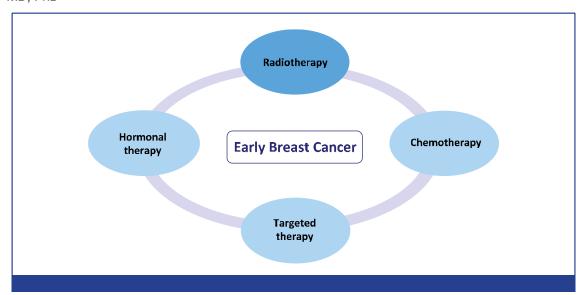
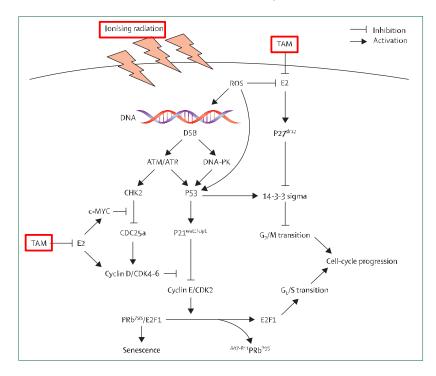


HORMONAL MANIPULATION AND RADIATION


S. Arcangeli, MD

I° AIRB COURSE IN RADIOBIOLOGY

How to sequence systemic therapies and radiotherapy in early breast cancer?


H. Wildiers, MD, $PhD^{1,2}$, T. Pecceu, MD^1 , C. Weltens, MD, $PhD^{2,3}$, P. Neven, MD, PhD^2 , S. Peeters, MD, $PhD^{2,3}$

(Belg J Med Oncol 2014;8(3):72-80)

Concurrent hormone and radiation therapy in patients with breast cancer: what is the rationale? Lancet Oncol 2009; 10: 53-60

Cyrus Chargari, Robert Alain Toillon, Dhara MacDermed, Pierre Castadot, Nicolas Magné

I° AIRB COURSE IN RADIOBIOLOGY

Concurrent hormone and radiation therapy in patients with breast cancer: what is the rationale? Lancet Oncol 2009; 10: 53-60

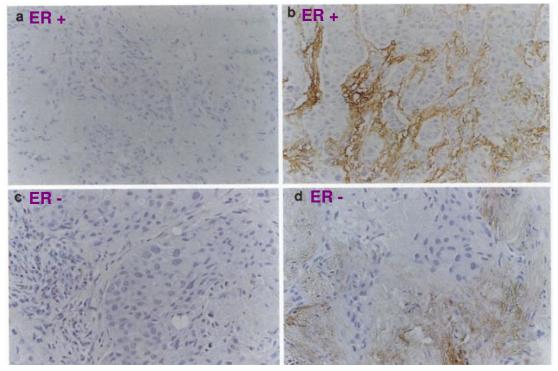
Cyrus Chargari, Robert Alain Toillon, Dhara MacDermed, Pierre Castadot, Nicolas Magné

Author	Patients included	Study arm	Median follow-up (years)	OS (10 years)	DFS	Local recurrence (10 years)	Distant recurrence (10 years)
Pierce et al.1/4	2690	RT + TAM RT → TAM	10.3	88% 90% p=0.65	83% 83% p=0.76	7% 5% p=0.54	NR NR
Ahn et al. 18-8	1649	RT + TAM RT → TAM	10.0	84% 82% p=0.45	NR NR	1C% 1/ ₆ % p=0.86	13% 22% p=0.12
Harris et al.34	278	RT + TAM RT → TAM	8.6	81% 86% p=0.64	85% 76% p=0.35	3% 7% p=0.52	NR NR
Azria et al. ^{23 b}	150	RT + LET RT → LET	2.2	NR	97%'	NR	NR

CS-overall survival; DFS-disease free survival; TAM-tamoxilen; RT-radiotherapy; NR-not reported; LET-letrozole.

a Retrospective study.

^b Prospective study.


[°] At 2 years.

the hypothesis that tamoxifen may have another potent action on tumor growth and not function soley as an antagonist of

Received 5/11/92; accepted 6/12/92.

response, prior to surgery. The tissue samples were fixed in 109 buffered formalin and embedded in paraffin; sections (4 μ m) and placed on gelatin-coated slides.

For the immunohistochemical localization of TGF-8s (15), were permeabilized with 1 mg/ml hyaluronidase in 0.1 M sod

tracential somiting for LGC-p1.

I° AIRB COURSE IN RADIOBIOLOGY

monal as well as hormonal effects. One nonhormonal effect of tamoxifen is the induction of transforming growth factor- β (TGF- β) secretion. TGF- β has been implicated in the pathogenesis of radiation-induced fibrosis. *Purpose:* We investigated the development of lung fibrosis in breast cancer patients who were treated after mastectomy with radiotherapy, with or without simultaneous adjuvant treatment with tamoxifen. *Methods:* Data from 196 women were included in the analysis.

Table 2. Incidence of marked lung fibrosis after postoperative radiotherapy adjuvant tamoxifen, in 84 randomly assigned patients with

	RT + tamoxifen, No. with fibrosis/total (% of total)	
12 fractions*	15/24 (63%)†	
22 fractions	5/14 (36%)†	

^{*}Refers to the number of fractions into which the total radiation dose was \dagger Cochran-Mantel-Haenszel test for association between lung fibrosis and number of fractions; P = .01.

cosmetic outcome of lumpectomy followed by postoperative radiotherapy. Wazer et al. (24) found a borderline significant (P = .06) increase in the risk of

It is not clea the predominan the induction whether it is

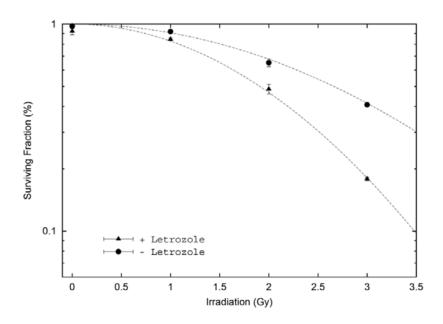
Breast Cancer

CHANGES IN PULMONARY FUNCTION UP TO 10 YEARS AFTER LOCOREGIONAL BREAST IRRADIATION

Katrien Erven, M.D.,* Caroline Weltens, M.D., Ph.D.,* Kristiaan Nackaerts, M.D., Ph.D., Steffen Fieuws, Ph.D., Marc Decramer, M.D., Ph.D., and Yolande Lievens, M.D., Ph.D.*

		~			
Variable	n	VC	FEV_1	TLC	DL_{CO}
Radiotherapy					
Left side	23	95	99	89	90
Right side	25	94	93	90	93
p Value		0.89	0.053*	0.63	0.30
Chemotherapy					
Yes	15	96	98	93	93
No	33	94	95	91	90
ν Value		0.29	0.46	0.39	0.54
Hormonal therapy					
Yes	19	94	96	87	93
No	29	95	96	91	91
p Value		0.42	0.87	0.012*	0.41
Smoker at baseline					
Yes	12	98	97	89	91
No	36	93	95	90	91
p Value		0.077	0.63	0.96	0.97
Postmenopausal					
Yes	21	93	94	89	91
No	27	96	97	90	92
p Value		0.062	0.32	0.57	0.90
Age >50 y					
Yes	26	93	94	88	92
No	22	96	98	92	91
p Value		0.19	0.21	0.022	0.83
$BMI > 25 \text{ kg/m}^2$				\blacksquare	
Yes	18	94	96	89	93
No	30	95	96	90	90
p Value		0.53	0.76	0.78	0.30
Early decrease >mean					
Yes	26	93	92	88	87
No	22	96	100	91	96
ν Value		0.23	0.0045*	0.078	0.0009*

Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 2, pp. 701-707, 2012


I° AIRB COURSE IN RADIOBIOLOGY

Research article

Open Access

Letrozole sensitizes breast cancer cells to ionizing radiation

David Azria¹, Christel Larbouret², Severine Cunat³, Mahmut Ozsahin⁴, Sophie Gourgou⁵, Pierre Martineau⁶, Dean B Evans⁷, Gilles Romieu⁸, Pascal Pujol³ and Andre Pèlegrin²

Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a phase 2 randomised trial

David Azria, Yazid Belkacemi, Gilles Romieu, Sophie Gourgou, Marian Gutowski, Khalil Zaman, Carmen Llacer Moscardo, Claire Lemanski, Michael Coelho, Barry Rosenstein, Pascal Fenoglietto, Nigel E A Crompton, Mahmut Ozsahin

Lancet Oncol 2010; 11: 258-65

	Concurrent group (N=55)	Sequential group (N=57)				
EORTC QLQ-C30 functional sca	ales					
Physical function	83-7 (20-100)	80-8 (25-100)				
Role function	82-4 (0-100)	82:5 (0-100)				
Social function	90-0 (0-100)	88-2 (0-100)				
Emotional function	76-1 (0-100)	71-5 (0-100)				
Cognitive function	78-8 (0-100)	76-6 (0-100)				
Global health status/QoL	70-6 (0-100)	65.4 (8-100)				
EORTC QLQ-C30 symptom scales						
Fatigue	22-8 (0-100)	28-6 (0-100)				
Nausea and vomiting	4-8 (0-100)	4.4 (0-50)				
Pain	23-6 (0-100)	29-3 (0-100)				
Dyspnoea	16-4 (0-100)	20-5 (0-100)				
Sleep disturbance	33-3 (0-100)	40.6 (0-100)				
Appetite	8-0 (0-100)	7-6 (0-100)				
Constipation	13-9 (0-100)	19-6 (0-100)				
Diarrhoea	9-1 (0-100)	7-7 (0-67)				
Financial effect	7-9 (0-100)	7-1 (0-100)				
EORTC QLQ-23 functional scal	es					
Body image	85-6 (0-100)	84.0 (0-100)				
Sexual function	7 7-3 (17- 1 00)	86-7 (33-100)				
Sexual enjoyment	58-7 (0-100)	59-5 (33-100)				
Future perspective	68-5 (0-100)	63-2 (0-100)				
EORTC QLQ-23 symptom scale	es					
Systemic therapy side-effects	18-5 (0-71)	20-2 (0-67)				
Breast symptoms	13-2 (0-89)	14.9 (0-100)				
Arm symptoms	15-2 (0-100)	20.5 (0-100)				
Hair loss	28-8 (0-100)	37-5 (0-100)				
Data are mean (range). EORTC – European Organisation for Research and Teatment of Cancer. QoL – quality of life.						

Concurrent group (N=74)			Sequential group (N=75)				
Grade 0	Grade 1	Grade 2	Grade 3	Grade 0	Grade 1	Grade 2	Gr a de 3
erapy							
72	2	0	0	26	44	4	1
58	5	0	0	59	9	1	0
4 5	19	1	0	51	15	1	0
31	34	3	0	35	31	4	0
14	40	11	2	20	34	13	2
6	41	16	4	8	35	18	3
1	15	11	2	2	14	13	1
ару							
28	35	4	0	22	4 5	3	1
42	22	4	0	58	9	2	0
54	14	4	0	60	14	1	0
	Grade 0 erapy 72 58 45 31 14 6 1 appy 28 42	Grade 0 Grade 1 erapy 72 2 58 5 45 19 31 34 14 40 6 41 1 15 appy 28 35 42 22	Grade 0 Grade 1 Grade 2 erapy 72 2 0 58 5 0 45 19 1 31 34 3 14 40 11 6 41 16 1 15 11 appy 28 35 4 42 22 4	Grade 0 Grade 1 Grade 2 Grade 3 erapy 72 2 0 0 58 5 0 0 45 19 1 0 31 34 3 0 14 40 11 2 6 41 16 4 1 15 11 2 apy 28 35 4 0 42 22 4 0	Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 erapy 2 0 0 26 58 5 0 0 59 45 19 1 0 51 31 34 3 0 35 14 40 11 2 20 6 41 16 4 8 1 15 11 2 2 app 28 35 4 0 22 42 22 4 0 58	Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 erapy 72 2 0 0 26 44 58 5 0 0 59 9 45 19 1 0 51 15 31 34 3 0 35 31 14 40 11 2 20 34 6 41 16 4 8 35 1 15 11 2 2 14 apy 28 35 4 0 22 45 42 22 4 0 58 9	Grade 0 Grade 1 Grade 2 Grade 3 Grade 0 Grade 1 Grade 2 Prapy 72 2 0 0 26 44 4 58 5 0 0 59 9 1 45 19 1 0 51 15 1 31 34 3 0 35 31 4 14 40 11 2 20 34 13 6 41 16 4 8 35 18 1 15 11 2 2 14 13 app 2 4 0 22 45 3 42 22 4 0 58 9 2

I° AIRB COURSE IN RADIOBIOLOGY

Concurrent hormone and radiation therapy in patients with breast cancer: what is the rationale? Lancet Oncol 2009; 10: 53-60


Cyrus Chargari, Robert Alain Toillon, Dhara MacDermed, Pierre Castadot, Nicolas Magné

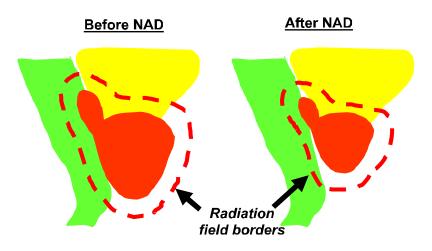
- in-vitro studies support the notion of antagonistic effects of concurrent tamoxifen and radiotherapy on tumour cells
- in-vivo research suggests a synergistic effect that could be attributable to micro-environmental changes in tumour responsiveness to ionising radiation and hormone therapy

CHARLES HUGGINS

Endocrine-induced regression of cancers

Nobel Lecture, December 13, 1966

I° AIRB COURSE IN RADIOBIOLOGY


Seminar article

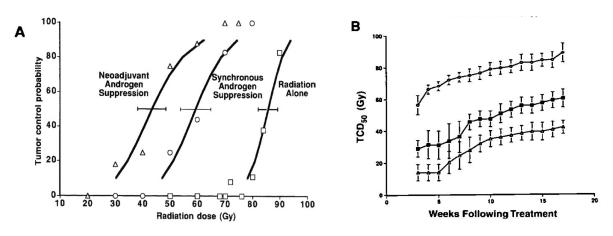
Why does androgen deprivation enhance the results of radiation therapy?

Jennifer Y. Wo, M.D.^{a,*}, Anthony L. Zietman, M.D.^b

^a Harvard Radiation Oncology Program, Boston, MA 02114, USA ^b Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA

Technical advantages: Volume Reduction

Urologic Oncology: Seminars and Original Investigations 26 (2008) 522-529

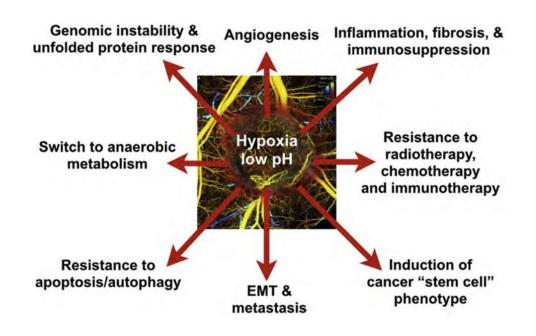

Seminar article

Why does androgen deprivation enhance the results of radiation therapy?

Jennifer Y. Wo, M.D.^{a,*}, Anthony L. Zietman, M.D.^b

Harvard Radiation Oncology Program, Boston, MA 02114, USA
 Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA

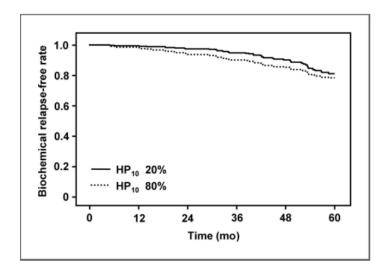
Biological advantages: prior ADT increase the probability of eradicating tumor by irradiation



Urologic Oncology: Seminars and Original Investigations 26 (2008) 522-529

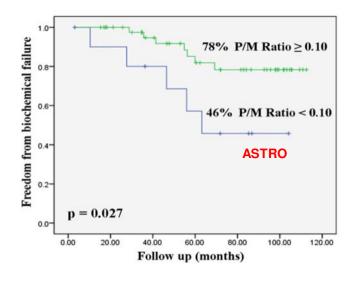
I° AIRB COURSE IN RADIOBIOLOGY

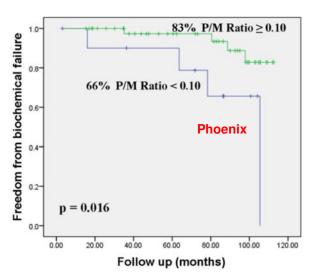
Treatment failure and poor prognosis of PCa could be due to the anomalous and inefficient pattern of vascularization, leading to


intermittent/chronic hypoxia

Predictive Biomarkers and Personalized Medicine

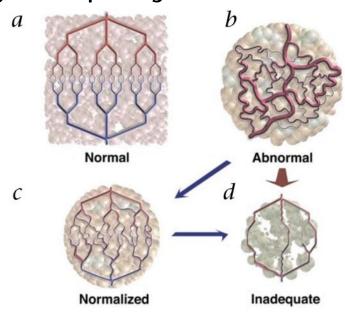
Tumor Hypoxia Predicts Biochemical Failure following Radiotherapy for Clinically Localized Prostate Cancer




2.66 1.075 1.023 0.9995	0.015
1.075 1.023	<0.00
1.023	< 0.00
	0.010
0.9995	0.019
	0.001
or at the site o	f the oxygen
1.073	0.021
1.085	<0.00
1.036	0.004
0.9992	<0.00
psies for local	control, LRFF
1.037	0.043
0.9991	0.032
	1.085 1.036 0.9992 posies for local of 1.037

I° AIRB COURSE IN RADIOBIOLOGY

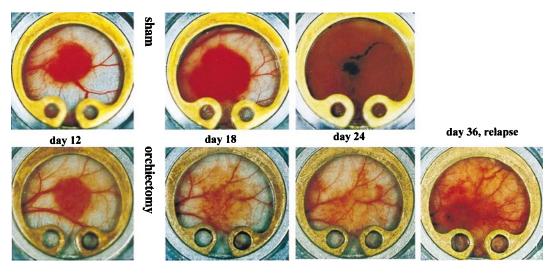
Hypoxic Prostate/Muscle Po₂ Ratio Predicts for Outcome in Patients With Localized Prostate Cancer: Long-Term Results


Aruna Turaka, M.D.,* Mark K. Buyyounouski, M.D., M.S.,* Alexandra L. Hanlon, Ph.D.,† Eric M. Horwitz, M.D.,* Richard E. Greenberg, M.D.,‡ and Benjamin Movsas, M.D.§

Anti-angiogenic therapy was proposed in 1971 as a means to treat solid tumors and in 1976 as a method of cancer prevention. Here we propose that this form of therapy, judiciously applied, can normalize the tumor vasculature and improve the delivery of therapeutics.

Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy

2001 Nature Publishing Group http://medicine.nature.com

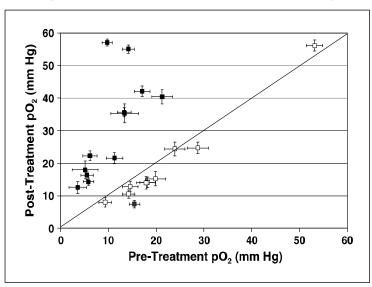

I° AIRB COURSE IN RADIOBIOLOGY

Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: Role of vascular endothelial growth factor

(vascular regression/permeability/vascular density)

RAKESII K. JAIN*†, NINA SAFABAKIISII*‡, AXEL SCKELL*§, YI CHEN*, PING JIANG*, LAURA BENJAMIN¶, FAN YUAN*||, AND ELI KESHET¶

Proc. Natl. Acad. Sci. USA 95 (1998)

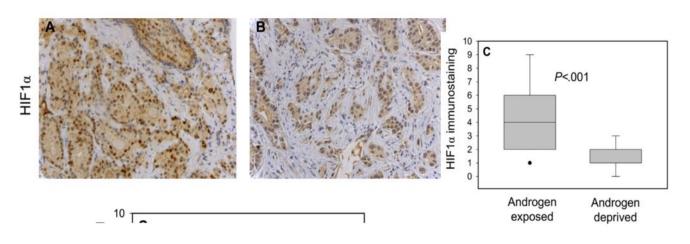

Hormone withdrawal inhibits VEGF expression and angiogenesis in hormone-dependent PCa, thereby mimicking anti-VEGF therapy

Priority Report

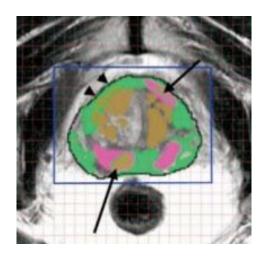
Androgen Withdrawal in Patients Reduces Prostate Cancer Hypoxia: Implications for Disease Progression and Radiation Response

Michael Milosevic, ^{1,5} Peter Chung, ^{1,5} Chris Parker, Robert Bristow, ^{1,4,5,8} Ants Toi, ^{2,6} Tony Panzarella, ^{3,7} Padraig Warde, ^{1,5} Charles Catton, ^{1,5} Cynthia Menard, ^{1,5} Andrew Bayley, ^{1,5} Mary Gospodarowicz, ^{1,5} and Richard Hill ^{4,8}

pO2 increased from 6.4 to 15 mmHg



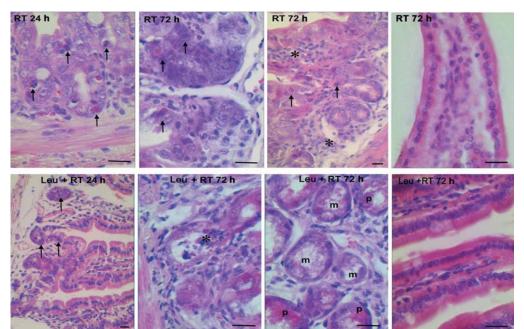
Cancer Res 2007; 67: (13). July 1, 2007


I° AIRB COURSE IN RADIOBIOLOGY

Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

Harald Bull Ragnum, MD,* Kathrine Røe, PhD,*,# Ruth Holm, PhD,† Ljiljana Vlatkovic, MD,† Jahn Marthin Nesland, PhD,†,** Eva-Katrine Aarnes, MSc,* Anne Hansen Ree, PhD,#,** Kjersti Flatmark, PhD,†,* Therese Seierstad, PhD,||,†† Wolfgang Lilleby, PhD,¶ and Heidi Lyng, PhD*

Importance of monitoring changes in tumor hypoxia during ADT



Hypoxia biomarker such HIF1a could be helpful for planning RT initiation and potential use of hypoxia-targeted therapy.

I° AIRB COURSE IN RADIOBIOLOGY

Protective Effect of Leuprorelin on Radiation-induced Intestinal Toxicity

MONICA MANGONI¹, MARIANGELA SOTTILI¹, CHIARA GERINI¹, ROSSELLA FUCCI¹, ALESSANDRO PINI², LAURA CALOSI², PIERLUIGI BONOMO¹, BEATRICE DETTI¹, DANIELA GRETO¹, ICRO MEATTINI¹, GABRIELE SIMONTACCHI¹, MAURO LOI¹, DANIELE SCARTONI¹, ILARIA FURFARO¹, STEFANIA PALLOTTA³ and LORENZO LIVI¹

	Low-risk	Intermediate-risk	High-risk	
Definition	PSA < 10 ng / mL	PSA 10-20 ng /mL	PSA > 20 ng / mL	any PSA
	and GS < 7	or GS 7	or GS > 7	any GS cT3-4
	and cT1-2a	or cT2b	or cT2c	or cN+
		Localised		Locally advanced

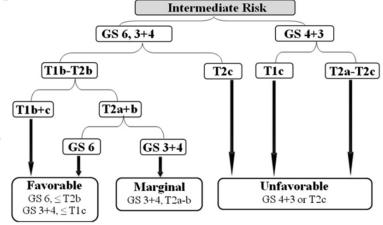
European Association of Urology 2015

Intermediate risk	Radiotherapy		A
PCa		76-78 Gy, in combination with short-term ADT (4-6	
PGa		mo).	

High risk PCa	Radiotherapy	In patients with high-risk localised PCa, the total dose is 76-78 Gy in combination with long-term	A
		ADT (2-3 yr is recommended).	
		In patients with locally advanced cN0 PCa,	Α
		radiotherapy must be given in combination with	
		long-term ADT (2-3 yr is recommended).	

I° AIRB COURSE IN RADIOBIOLOGY

Synthesis of Trials Data


Overall Survival Benefit

- **EORTC 22863** 3 yrs vs. 0 (18.3% at 10 yrs)
- **TROG 9601** 6 months vs. 0 (13.3% at 3 yrs)
- **DFCI 95096** 6 months vs. 0 (13% at 8 yrs)
- **RTOG 8610** 4 months vs. 0 (8.8% at 10 yrs)
- **RTOG 9408** 4 months vs. 0 (5% at 10 yrs)
- **RTOG 9910** 9 months vs. 4 months (1% at 10 yrs)
- **EORTC 22961** 3 yrs vs. 6 months (3.8% at 5 yrs)

Are these results transferable in daily clinical practice?

• Population:

inhomogeneity of intermediate risk group

- Intervention: use of ineffective RT total dose
- Outcomes: improvement in OS and DFS likely overestimated

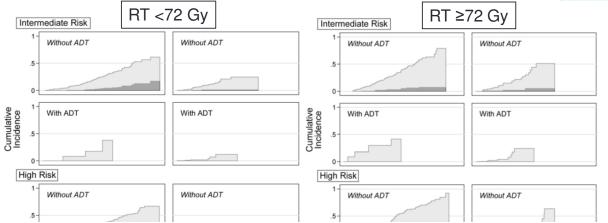
I° AIRB COURSE IN RADIOBIOLOGY

CLINICAL INVESTIGATION

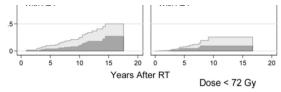
Prostate

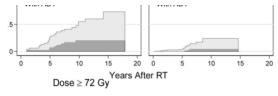
WHAT DOSE OF EXTERNAL-BEAM RADIATION IS HIGH ENOUGH FOR PROSTATE CANCER?

THOMAS N. EADE, F.R.A.N.Z.C.R.,* ALEXANDRA L. HANLON, Ph.D.,[†] ERIC M. HORWITZ, M.D.,* MARK K. BUYYOUNOUSKI, M.D.,* GERALD E. HANKS, M.D.,* AND ALAN POLLACK, M.D., Ph.D.*


A decrease in BF secondary to dose escalation should translate into a reduction in distant spread (10). Our results more precisely define this relationship, showing that RT dose causes an 8% reduction in the risk of distant metastases for each 1 Gy delivered. We anticipate that as our median follow-up increases, the benefit of dose escalation will strengthen, because higher initial doses will proportionally increase local control and prevent the late wave of distant metastasis due to persistent local disease (34, 35). Follow-up > 10 years is required

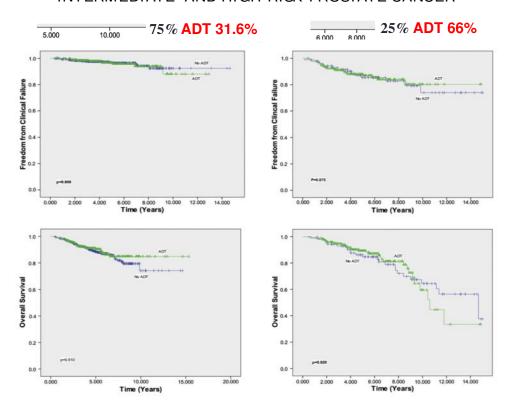
Prostate cancer-specific mortality after definitive radiation therapy: Who dies of disease?


EJC


where the second control of the second

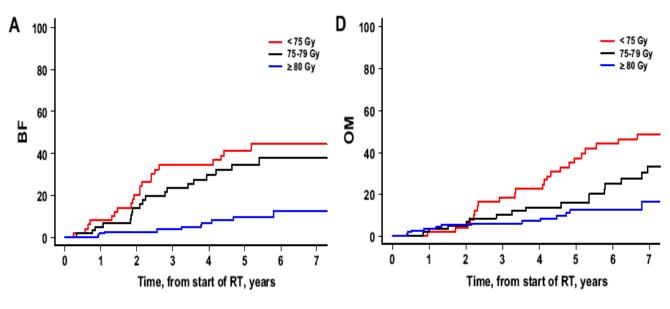
Outcomes of 2675 men with localised PC treated with RT \pm ADT from 1987–2007

High dose RT reduced PCSM from 14 to 4% in high risk pts



I° AIRB COURSE IN RADIOBIOLOGY

CLINICAL INVESTIGATION


Prostate

LACK OF BENEFIT FOR THE ADDITION OF ANDROGEN DEPRIVATION THERAPY TO DOSE-ESCALATED RADIOTHERAPY IN THE TREATMENT OF INTERMEDIATE- AND HIGH-RISK PROSTATE CANCER

RADIOTHERAPY DOSES OF 80 GY AND HIGHER ARE ASSOCIATED WITH LOWER MORTALITY IN MEN WITH GLEASON SCORE 8 TO 10 PROSTATE CANCER

Niraj Pahlajani, M.D.,* Karen J. Ruth, M.S., † Mark K. Buyyounouski, M.D., ‡

Int J Rad Oncol Biol Phys 2012

I° AIRB COURSE IN RADIOBIOLOGY

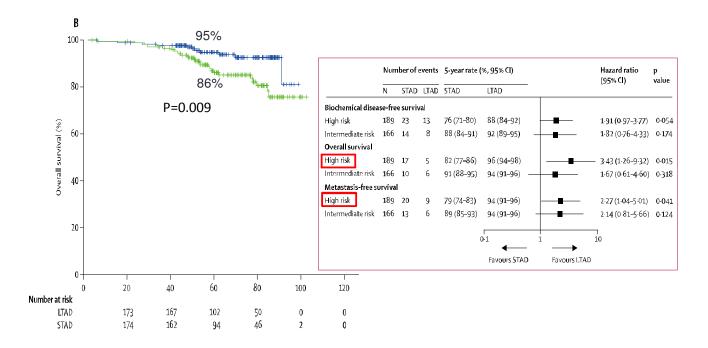
RT + long vs. long ADT

Very HR PCa

- PCS IV. #NCT00223171 70 Gy RT + 18 months HT vs. 36 months HT
 - no OS neither PSCM benefit at median follow up of 6.4 yrs
 - T3-T4; PSA >20; GS >7; N0

EORTC 22961 vs. PCS IV

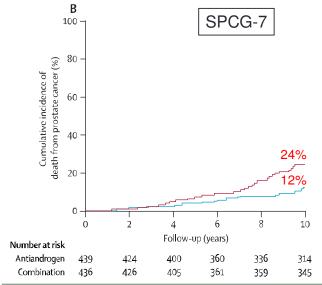
Study	N. pts	Median f-up (years)	5-year Survival (%)			
Duration of ADT			6 months	18 months	36 months	
EORTC ¹	970	6.4	80.6		85.3	
PCS IV ²	630	6.4		86.8	92.1	


¹ Bolla M et al. N Engl J Med 2009

² Nabid A, et al. JCO 2013;31(S6):3 (abs)

High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): a randomised, controlled, phase 3 trial

Lancet Oncol 2015; 16: 320-27


I° AIRB COURSE IN RADIOBIOLOGY

High dose RT ± ADT

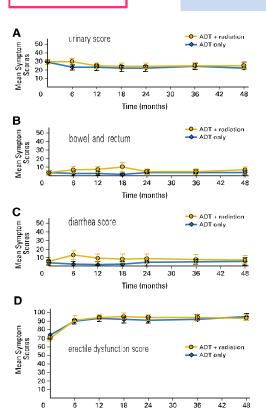
Ongoing Trials

- RTOG 0815 79.2 Gy RT ± 6 months HT in IR-HR PCa
 The only trial stratified by Adult Comorbidity Evaluation-27 comorbidity score
- EORTC 22991 70 Gy/74 Gy/78 Gy RT ± 6 months HT in IR PCa
 - 819 pts from 14 European Countries

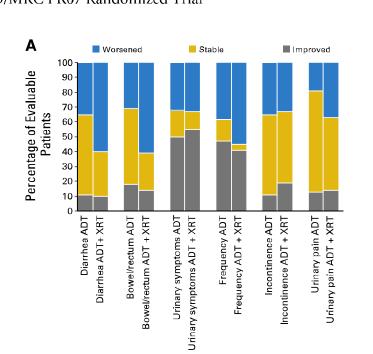
ADT ± RT

	1.0				NO	OI MF	RC
-	0.8						
Overall Survival (proportion)	0.6				1	55%	
Overall (prop	0.4	— ADT — ADT + RT				49%	, ,
	0.2	HR, 0.70 (959 10-year OS, 9					
	0	2	4	6	8	10	12
			T	ime (ye	ars)		
No. at ris ADT ADT + R	60		498 505	353 381	185 208	77 85	28 32

10 yrs	ADT+RT	ADT	p
bF	26%	75%	< 0.001
CSS	88%	76%	< 0.001
os	70%	61%	0.004


10 yrs	ADT+RT	ADT	р
TTP	63%	27%	< 0.001
CSS	68%	46%	< 0.001
os	55%	49%	0.001

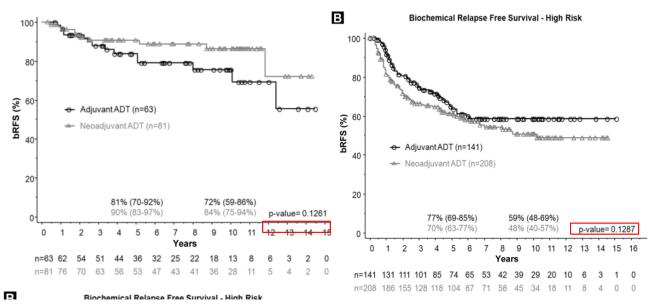
I° AIRB COURSE IN RADIOBIOLOGY


ADT ± RT

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Time (months)



Long-Term Quality-of-Life Outcomes From the NCIC CTG PR3/MRC PR07 Randomized Trial

Original Study

Clinical Genitourinary Cancer Month 2015

Adjuvant Versus Neoadjuvant Androgen Deprivation With Radiotherapy for Prostate Cancer: Does Sequencing Matter?

The synergy between RT and ADT is independent of the sequencing of both

I° AIRB COURSE IN RADIOBIOLOGY

...more in

Combination of androgen deprivation therapy and radiotherapy for localized prostate cancer in the contemporary era

Rolando M. D'Angelillo ^{a,}, Pierfrancesco Franco ^b, Berardino De Bari ^c, Alba Fiorentino ^d, Stefano Arcangeli ^e, Filippo Alongi ^d

^a Radiation Oncology Campus Bio-Medico University, Rome Italy
^b Department of Oncology, Radiation Oncology, University of Turin School of Medicine, Turin, Italy
^c Radiation Oncology Department, Centre Hospitalier Universitaire Vaudois – CHUV, Lausanne Switzerland
^d Radiation Oncology Department, Sacro Cuore-Don Calabria Hospital, Negrar-Verona, Italy
^c Radiation Oncology, Azienda Ospedaliera S. Camillo-Forlanini, Rome, Italy

Received 14 February 2014; received in revised form 18 August 2014; accepted 1 October 2014