

Trattamenti locali nel NSCLC metastatico Trattamenti ablativi: pratica corrente o ricerca clinica?

S. Arcangeli
U.O.C. Radioterapia

Azienda Ospedaliera San Camillo - Forlanini
Roma

Hellman S, Weichselbaum RR. J Clin Oncol. 1995;13(1):8-10

- A counterpoint to the contiguous (Halsted) and systemic theories of cancer spread
- Cancer $=$ spectrum from localized to widespread at time of diagnosis, with many intermediate states
- Early metastases can be limited in number and location
- "based on a state of limited metastatic capacity"

2011 Oligometastases revisited

Is Definitive Therapy Justified in Lung Cancer Patients with Oligometastatic Disease?

Site	1976	1982	1994	2008
Breast	75	76	85	90
Colon	50	55	63	65
Prostate	67	73	93	100
Rectum	48	52	61	68
Lung	12	13	14	(17)

CA CANCER J CLIN 2013

Levels of Evidence in the Primary Literature

Stereotactic Ablative Radiotherapy for Pulmonary Oligometastases and Oligometastatic Lung Cancer

David Benjamin Shultz, MD, PhD,* Andrea Riccardo Filippi, MD, \dagger Juliette Thariat, MD, \dot{f} Francoise Mornex, MD, PhD $; \ddagger$ Billy W. Loo Jr, MD, PhD, * and Umberto Ricardi, MD \dagger

Ongoing Clinical Trials Examining the Role for Surgery or SABR for Oligometastatic Cancer

Study	Design	Eligibility	Intervention	Primary Endpoint
PulMICC ${ }^{\text {3 }}$	Randomized phase II	Pulmonary metastases from colorectal cancer	Active monitoring vs. pulmonary metastasectomy	Feasibility/survival
SABR-COMET ${ }^{\text {S }}$	Randomized phase II	All treatable metastatic sites, maximum of three tumors to any single organ system; controlled primary tumor	Palliative-scheme radiation as clinically indicated vs. stereotactic ablative radiation to multiple sites	Overall survival
SAFRON If ${ }^{\text {P }}$	Randomized phase II	A maximum of three metastases to the lung from any nonhematological malignancy	Stereotactic multifraction SABR vs. nadiosurgery	Toxicity
NCT0118563911	Phase II	NSCLC with 55 metastatic sites, involving lung. liver, adrenal, or spinal lesions; if primary untreated, must have three mets	SBRT to affected sites, delivered in three or five fractions	Progression-free survival
NCT01725165 ${ }^{7}$	Randomized phase II	Three or less metastases from NSCLC	Consolidative radiotherapy andor surgery vs. systemic therapy or observation	Progression-free survival

Surgery for Lung Metastases

A RANDOMIZED TRIAL OF SURGERY IN THE TREATMENT OF SINGLE METASTASES TO THE BRAIN

Roy A. Patchell, M.D., Phillip A. Tibbs, M.D., John W. Walsh, M.D., Robert J. Dempsey, M.D., Yosh Maruyama, M.D., Richard J. Kryscio, Ph.D., William R. Markesbery, M.D., John S. Macdonald, M.D., and Byron Young, M.D.

Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial

Survival in patients with single metastasis

Radical treatment of synchronous oligometastatic non-small cell lung carcinoma (NSCLC): Patient outcomes and prognostic factors Gwendolyn H.M.J. Griffioen ${ }^{\text {a,* }}$, Daniel Toguri ${ }^{\text {b }}$, Max Dahele ${ }^{\text {a }}$, Andrew Warner ${ }^{\text {b }}$, Patricia F. de Haan ${ }^{\text {a }}$, George B. Rodrigues ${ }^{\text {b }}$, Ben J. Slotman ${ }^{\text {a }}$, Brian P. Yaremko ${ }^{\text {b }}$, Suresh Senan ${ }^{\text {a }}$, David A. Palma ${ }^{\text {b }}$

- From 1999-2012, 61 NSCLC patients with 1-3 oligomets received definitive treatment to all sites of disease, pooled from 2 large cancer centers in Netherlands and Canada
- 82\% solitary met, 15\% 2 mets, $3 \% 3$ mets
- Location: 59\% brain; 18\% bone; 7\% each for contralateral lung, adrenal, and distant LN.
lungcancer 포풀

2013

Radical treatment of synchronous oligometastatic non-small cell lung carcinoma (NSCLC): Patient outcomes and prognostic factors Gwendolyn H.M.J. Griffioen ${ }^{\text {a,* }}$, Daniel Toguri ${ }^{\text {b }}$, Max Dahele ${ }^{\text {a }}$, Andrew Warner ${ }^{\text {b }}$, Patricia F. de Haan ${ }^{\text {a }}$, George B. Rodrigues ${ }^{\text {b }}$, Ben J. Slotman ${ }^{\text {a }}$, Brian P. Yaremko ${ }^{\text {b }}$, Suresh Senan ${ }^{a}$, David A. Palma ${ }^{\text {b }}$

Treatment primary lung tumor	$n(\%)$	Treatment to metastases $-n(\%)$	
Concurrent CRT	30 (49.2)	Stereotactic RT	24 (39.3)
Sequential CRT	10 (16.4)	Intracranial	18 (29.5)
Primary RT	2 (3.3)	Extracranial	6 (9.8)
Stereotactic RT	10 (16.4)	Conventional RT (EBRT)	13 (21.3)
Trimodality (surgery + CRT)	3 (4.9)	Surgery	6 (9.8)
Surgery + CT	3 (4.9)	WBRT + Boost	2 (3.3)
Surgery only	3 (4.9)	Surgery + RT	16 (26.2)

lungcancer

 \cdots 2013Radical treatment of synchronous oligometastatic non-small cell lung carcinoma (NSCLC): Patient outcomes and prognostic factors
Gwendolyn H.M.J. Griffioen ${ }^{\text {a,* }}$, Daniel Toguri ${ }^{\text {b }}$, Max Dahele ${ }^{\text {a }}$, Andrew Warner ${ }^{\text {b }}$,
Patricia F. de Haan ${ }^{\mathrm{a}}$, George B. Rodrigues ${ }^{\text {b }}$, Ben J. Slotman ${ }^{\text {a }}$, Brian P. Yaremko ${ }^{\text {b }}$, Suresh Senan ${ }^{a}$, David A. Palma ${ }^{\text {b }}$

Overall Survival

lungcancer A
 2013

Is there an oligometastatic state in non-small cell lung cancer? A systematic review of the literature

Allison Ashworth, George Rodrigues, Gabriel Boldt, David Palma*

5 year OS: 23.3\% (8.3-86\%)

Median Survival (Months), All Patients ($\mathrm{n}=1855$)

- Seres with 4030 poferts

- Saiss wth 30.50 patients
- Seres wh >50 paterts

lungcancer 4 2013

Is there an oligometastatic state in non-small cell lung cancer? A systematic review of the literature

Allison Ashworth, George Rodrigues, Gabriel Boldt, David Palma*

2013

Is there an oligometastatic state in non-small cell lung cancer? A systematic review of the literature

Allison Ashworth, George Rodrigues, Gabriel Boldt, David Palma*

- 60% of studies included patients with brain metastases only
- neither intervention is supported by level

1 evidence from RCTs

long-term survival reflective of patient selection, or a treatment effect?

Dirk De Ruysscher, MD, PhD,*\# Rinus Wanders, MD, * Angela van Baardwijk, MD, PhD,* Anne-Marie C. Dingemans, MD, PhD, \dagger Bart Reymen, MD, * Ruud Houben, MSc,* Gerben Bootsma, MD, PhD, \ddagger Cordula Pitz, MD, PhD, § Linda van Eijsden, MD, $\%$
Wiel Geraedts, MD,// Brigitta G. Baumert, MD, PhD,* and Philippe Lambin MD, PhD*

An Individual Patient Data Metaanalysis of Outcomes and Prognostic Factors After Treatment of Oligometastatic Non-Small-Cell Lung Cancer

Allison B. Ashworth, ${ }^{1}$ Suresh Senan, ${ }^{2}$ David A. Palma, ${ }^{1}$ Marc Riquet, ${ }^{3}$ Yong Chan Ahn, ${ }^{4}$ Umberto Ricardi, ${ }^{5}$ Maria T. Congedo, ${ }^{6}$ Daniel R. Gomez, ${ }^{7}$ Gavin M. Wright, ${ }^{8}$ Giulio Melloni, ${ }^{9}$ Michael T. Milano, ${ }^{10}$ Claudio V. Sole, ${ }^{11}$ Tommaso M. De Pas, ${ }^{12}$ Dennis L. Carter, ${ }^{13}$ Andrew J. Warner, ${ }^{1}$ George B. Rodrigues ${ }^{1}$

Median OS 26 months, 5-year OS 29.4 \%

A Call for the Aggressive Treatment of Oligometastatic and Oligo-Recurrent Non-Small Cell Lung Cancer

Pretesh R. Patel, ${ }^{1}$ David S. Yoo, ${ }^{1}$ Yuzuru Niibe, ${ }^{2}$ James J. Urbanic, ${ }^{3}$ and Joseph K. Salama ${ }^{1}$

Analysis of further disease progression in metastatic non-small cell lung cancer: Implications for locoregional treatment

Table IV. Outcome of all 38 patients.

No progression of disease	12 patients
Progression only at sites of initial involvement	7 patients
Development of new metastases in an organ that was initially involved with tumor	
Development of new metastasis in an organ that was not initially uninvolved with tumor	14 patients (6 also developed more metastases in an organ that was previously involved with tumor)
No follow-up scans	2 patients

Table V. Outcome of 17 patients who had ≤ 4 sites of involvement in addition to the primary tumor

No progression of disease	7 patients
Progression only at sites of initial involvement	4 patients
Development of new metastases in an organ that was initially involved with tumor	
Development of new metastasis in an organ that was not initially uninvolved with tumor	5 patients

Is there a role for consolidative stereotactic body radiation therapy following first-line systemic therapy for metastatic lung cancer? A patterns-of-failure analysis

Patterns of Failure in metastatic NSCLC

After $1^{\text {st }}$ line systemic therapy, 2/3 of patients have first failure in initially involved sites, with median PFS of 3 mos

EXPERT Moving from histological
REVIEWS subtyping to molecular characterization: new treatment opportunities in advanced non-small-cell lung cancer

Expert Rev. Anticancer Ther. Early online, 1-19 (2014)

Simona Carnio, Silvia Novello, Paolo Bironzo and Giorgio Vittorio Scagliotti*
Department of Oncology, S. Luig Hospital University of Torino, Aegione Gonzale 10, 10043 Orbassana Torina haly
*Author for carrespandence:
Tel.: +390119026414
Fax +390119015184
giorgio. scaglortiounito it

One size does NOT fit all

Non Small Cell Lung Cancer: From Histology To Genomics

The targeted therapy revolution: patients with advanced, unresectable lung cancer now live longer

Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010; 10: 760-774.

The "Darwinian" oncology
 Why the cancer will always win at this point:

The odds are $40,000,000,000+$ to 1 in favor of the cancer ie,
$4 \times 10^{10+}$ cancer cells vs.

1 drug blocking 1 pathway

Some cells will not be driven by the pathway being blocked. These cells will "evolve" by Darwinian selection and grow.

Targeted therapies: molecular vs spatial

Larsen J, et al. Cancer J 2011;17: 512-527

Radiation therapy:
Spatially targeted

Great if you find an Achilles heel pathway Eventually, some resistant cells emerge

All cells susceptible, given enough dose Nearby normal tissues limit tolerance

Journal ot

Local Ablative Therapy of Oligoprogressive Disease Prolongs Disease Control by Tyrosine Kinase Inhibitors in Oncogene-Addicted Non-Small-Cell Lung Cancer

PFS of all patients treated with LAT and continuation of TKI therapy

Stereotactic Radiotherapy Can Safely and Durably Control Sites of Extra-CNS Oligoprogressive Disease in ALK-Positive Lung Cancer Patients on Crizotinib

Longer time on the active agent was associated with improved OS

Stereotactic ablative radiotherapy: what's in a name?
Billy W. Loo Jr MD, PhD ${ }^{\text {a,* }}$, Joe Y. Chang MD, PhD ${ }^{\text {b }}$, Laura A. Dawson MD, FRCPC ${ }^{\text {c }}$, Brian D. Kavanagh MD, MPH ${ }^{\text {d }}$, Albert C. Koong MD, PhD ${ }^{\text {a }}$, Suresh Senan MRCP, FRCR, PhD ${ }^{\text {e }}$, Robert D. Timmerman MD ${ }^{\boldsymbol{f}}$

An Abscopal Response to Radiation and Ipilimumab in a Patient with Metastatic Non-Small Cell Lung Cancer

Encouse B. Golden ${ }^{1}$, Sandra Demaria ${ }^{12}$, Peter B. Schiff ${ }^{1}$, Abraham Chachoua ${ }^{3}$, and Silvia C. Formenti ${ }^{1}$

Oligo- and Polymetastatic Progression in Lung Metastasis(es) Patients Is Associated with Specific MicroRNAs

$-3.0-2.8-2.5-2.3-2.0-1.8-1.6-1.3-1.1-0.8-0.6-0.4-0.10 .10 .4 \quad 0.6 \quad 0.81 .11 .31 .61 .8 \quad 2.0$

Oligometastasis
g-rank Mantel-Cox $p=0.0022$
Polymetastasis

Ciao, Mauro

