

cieta Italiana di Radiobiologia

Dr. Alessio Bruni UO Radioterapia di Modena

BRT in Prostate cancer

XXIX Congresso Nazionale AIRB meeting congiunto con VII Congresso Nazionale AIRO Giovani

Firenze 13-14 Giugno 2014

Associazior Italiana Radioterapi Oncologica

Why and When SBRT???

The Lancet Oncology Commission

Delivering affordable cancer care in high-income countries

Richard Sullivan, Jeffrey Peppercorn, Karol Sikora, John Zalcberg, Neal J Meropol, Eitan Amir, David Khayat, Peter Boyle, Philippe Autier, Ian F Tannock, Tito Fojo, Jim Siderov, Steve Williamson, Silvia Camporesi, J Gordon McVie, Arnie D Purushotham, Peter Naredi, Alexander Eggermont, Murray F Brennan, Michael L Steinberg, Mark De Ridder, Susan A McCloskey, Dirk Verellen, Terence Roberts, Guy Storme, Rodney J Hicks, Peter J Ell, Bradford R Hirsch, David P Carbone, Kevin A Schulman, Paul Catchpole, David Taylor, Jan Geissler, Nancy G Brinker, David Meltzer, David Kerr, Matti Aapro

The burden of cancer is growing, and the disease is becoming a major economic expenditure for all developed countries. In 2008, the worldwide cost of cancer due to premature death and disability (not including direct medical costs) was estimated to be US\$895 billion. This is not simply due to an increase in absolute numbers, but also the rate of increase of expenditure on cancer. What are the drivers and solutions to the so-called cancer-cost curve in developed countries? How are we going to afford to deliver high quality and equitable care? Here, expert opinion from health-care professionals, policy makers, and cancer survivors has been gathered to address the barriers and solutions to delivering affordable cancer care. Although many of the drivers and themes are specific to a particular field-eg, the huge development costs for cancer medicines-there is strong concordance running through each contribution. Several drivers of cost, such as over-use, rapid expansion, and shortening life cycles of cancer technologies (such as medicines and imaging modalities), and the lack of suitable clinical research and integrated health economic studies, have converged with more defensive medical practice, a less informed regulatory system, a lack of evidence-based sociopolitical debate, and a declining degree of fairness for all patients with cancer. Urgent solutions range from re-engineering of the macroeconomic basis of cancer costs (eg, value-based approaches to bend the cost curve and allow cost-saving technologies), greater education of policy makers, and an informed and transparent regulatory system. A radical shift in cancer policy is also required. Political toleration of unfairness in access to affordable cancer treatment is unacceptable. The cancer profession and industry should take responsibility and not accept a substandard evidence base and an ethos of very small benefit at whatever cost; rather, we need delivery of fair prices and real value from new technologies.

Lancet Oncol 2011; 12: 933-80

See Comment pages 923-32 Kings Health Partners, King's **College, Integrated Cancer** Centre, Guy's Hospital Campus, London, UK (Prof R Sullivan MD); Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA (Prof | Peppercorn MD); CancerPartnersUK, London, UK (Prof K Sikora FRCP); Peter MacCallum Cancer Centre University of Melbourne, Melbourne, VIC Australia (Prof J Zalcherg FRACP); University Hospitals Seidman **Cancer Center, Case Comprehensive Cancer Center**, **Case Western Reserve** 20. 02.

Sullivan R et al. - Lancet Oncology - 2011

Why and When SBRT???

Cancer is becoming a **major economic expenditure** for all developed countries. In 2008, the worldwide cost of cancer due to premature death and disability was estimated to be **US \$ 895 billion**.

The cancer **profession and indust** should take responsibility and **not acce** a **substandard evidence base** and **ethos of very small benefit at whate cost** : rather, we need delivery of f prices and real value from n technologies [..]

Sullivan R et al. - Lancet Oncology - 2011

Why SBRT in Prostate Cancer ?????

From 2008... To..... NOW!!!!!

Why to threat Prostate Cancer ?????

8. TREATMENT: DEFERRED TREATMENT (WATCHFUL WAITING/ACTIVE MONITORING)

8.1 Introduction

PROSTATE CANCER - UPDATE MARCH 2013

There is a great difference between the incidence of PCa and deaths from PCa. In 2007, in the USA, there were 240,890 new cases with only 33,720 deaths (1). Several autopsy studies of people dying from different causes have shown that while 60-70% of older men have histological PCa (2), a large proportion of these tumours will not progress. Prostate cancer is diagnosed in only 15-20% of men during their lifetime, with a 3% lifetime risk of death (3).

The incidence of small, localised, well-differentiated PCa is increasing, mainly as a result of prostatespecific antigen (PSA) screening and 'multicore' schemes of prostate biopsy. These data suggest that many men with localised PCa would not actually benefit from definitive treatment. With the aim of reducing the risk of overtreatment in this subgroup of patients, two conservative management strategies of 'watchful waiting' and 'active surveillance' have been proposed.

EAU 2013

AIOM 2013

35

La sopravvivenza lei pazienti con carcinoma prostatico, non considerando la mortalità per altre cause, è attualmente attestata all'88% a 5 anni dalla diagnosi, in costante e sensibile crescita [3]. Il principale fattore correlato a questa tendenza temporale è dato dall'anticipazione diagnostica e dalla progressiva diffusione dello screening opportunistico, comportante evidentemente una quota di sovradiagnosi, peraltro con distribuzione disomogenea sul territorio nazionale.

Why SBRT in Prostate Cancer ?????

BACKGROUND

ch **a low a/B value (=1.5)** , related to a long doubling time of PCa cells and to fective repair capacity of sublethal RT damage at low dose per fraction, suppo hypofractionation as an optimal RT option particularly for localized PCa

History.....

Carcinoma of prostate treated by radical external beam radiotherapy using hypofractionation twenty-two years' experience (1962–1984)

M.S., F.R.C.S. R.W. Lloyd-Davies, M.B., B.S., F.R.C.R. C.D. Collins, M.Sc., PH.D. A.V. Swan

In the 1960s-1980s, 209 pts were treated with 36 Gy in 6 fx over 18 days

68% 5 year survival in a mixed risk cohort

FIORENTIN

1990

....More Recent Years

	Stats	LE	Nr pts	Class Risk	iPSA	Dose/Fractionatio
2007	Р	2b	44	Low Intermediate High		32 (4x8) 36 (4 x 9)
land 2009	Р	2b	112	Low, Intermediate	5.2	35 (5x7)
ride 2011	Р	2b	45	Low	4,9	36.25 (5x7.25) 37.5 (5x7.5)
2011	Р	1b	82	Low, Intermediate	5.35	35 (5x7) 36.25 (5x7.25)
2012	Р	2b	67	Low	<10	36.25 (5x7.25)
2013	Р	2b	304	Low, Intermediate, High	5.8	35 (5x7) 36.25(5x7.25)
cco 2013	Р	2b	100	Low, Intermediate	8.07	35 (5 X 7)
2013	Р	2b	100	Low Intermediate High	6.9	35 (5x7) 36.25 (5x7.25)
gi 2013	Р	2b	40	Low, Intermediate	6,25	35(5x7)

VOLUME 29 · NUMBER 15 · MAY 20 2011

JOURNAL OF CLINICAL ONCOLOGY

Phase I Dose-Escalation Study of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer Thomas P. Boike, Yair Lotan, L. Chinsoo Cho, Jeffrey Brindle, Paul DeRose, Xian-Jin Xie, Jingsheng Yan, Ryan Foster, David Pistenmaa, Alida Perkins, Susan Cooley, and Robert Timmerman

ORIGINAL REPORT

Phase I Dose Escalation Study 2006-2009

t has been shown that **SBRT can mimic** these highly conformal brachytherapy dose distributions

Alongi et al. Radiation Oncology 2013, 8:171 http://www.ro-journal.com/content/8/1/171

RESEARCH

Open Access

Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study

Filippo Alongi^{1,4*}, Luca Cozzi², Stefano Arcangeli¹, Cristina Iftode¹, Tiziana Comito¹, Elisa Villa¹, Francesca Lobefalo¹, Pierina Navarria¹, Giacomo Reggiori¹, Pietro Mancosu¹, Elena Clerici¹, Antonella Fogliata², Stefano Tomatis¹, Gianluigi Taverna³, Pierpaolo Graziotti³ and Marta Scorsetti¹

RESEARCH ARTICLE

Giampaolo Bolzicco^{1*+}, Maria Silvia Favretto¹⁺, Ninfa Satariano³⁺, Enrico Scremin²⁺, Carmelo Tambone²⁺ and Andrea Tasca^{2†}

A prospective protocol-based study for the treatment of **100 pts** with localized prostate cancer treated with CyberKnife Robotic Radiosurgery System

T Stage	Patients
Tic	44 (4496)
T2a-b	29 (29%)
(T2a, 10 pts)	
(T2b, 19 pts)	
T2c	27 (27%)
Gleason score	
<6 (2+2, 2+3, 3+2)	8 (896)
6 (3+3)	76 (76%)
>7 (3+4 11 pts, 4+3 4 pts, 5+5 1 pt)	16 (16%)
PSA	
at diagnosis	ng/ml
All patients	7.72 ng/ml
SBRT (71 pts)	6.48 ng/ml
SBRT+ADT (29 pts)	10.77 ng/m
Pre-treatment	ng/ml
All patients	5.03 ng/ml
SBRT (71 pts)	6.31 ng/ml
SBRT+ADT (29 pts)	1.90 ng/ml
Risk category	Patients
Low (PSA <10, GS 6, T1 c, T2a)	41 (4196)
Intermediate (PSA >10, GS 7 or T2b-c)	42 (4296)
High (PSA >20, GS 8–10, 2 Int. risk features)	17 (1796)
Prostate volume (medium 33 cc)	
≤ 33 cc.	51 (5196)
> 33 cc.	49 (49%)

35 Gy was in 5 fractions of 7 Gy over 5 consecutive days

Table 2 Cyberk	nife*-SBRT: to	oxicity in 100) patients
07	RTOO	i grade	\frown
Acute (62 pts)	E	Π.	1 m 1
Urinary	34%	12%	- 28
Rectal	27%	18%	
Late (9 pts)			
Urinary	496	3%	196
Rectal	296	196	-

Urology

RESEARCH

Stereotactic body radiotherapy for localized prostate cancer: disease control and quality of life at 6 years RADIATION 2013 ONCOLOGY

Alan J Katz^{1*}, Michael Santoro¹, Fred Diblasio² and Richard Ashlev³

".....A **6-year** update of treatment results from **304** low-, intermediate-, and high-risk prostate cancer patients who received CyberKnife SBRT......"

50 pts 35 Gy - 7 Gy/die 254 pts **36.25** Gy - 7,25 Gy/die

+ Amifostina

Table 2 Acute bladder/rectal toxicity using RTOG scoring after prostate treatment using the 35 and 36.25 Gy doses

		RTOG grade% (number) of patients						
	Total dose	0	1	Ш	III & IV			
Acute urinary	35 Gy	24% (12)	72% (36)	4% (2)				
	36.25 Gy	20.5% (52)	74.8% (190)	4.7% (12)	3. 			
Acute rectal	35.00 Gy	20% (10)	76% (38)	4% (2)	<u></u>			
	36.25 Gy	22.% (56)	74.4% (189)	3.5% (9)	_			

".... Actuarial 5-year biochemical recurrencesurvival was 97% for low-risk, 90,7% for intermedi risk, and 74.1% for high-risk patients»

instead of standard RT is **huge in terms of cost and time** that patients must commit to their therapy. Sl vantageous as compared to HDR as it **is done non-invasively**, without need for anesthesia Radiother Oncol. 2013 Nov;109(2):217-21. doi: 10.1016/j.radonc.2013.08.030. Epub 2013 Sep 20.

Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. 2013

King CR1, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, Meier R, Wang J, Kupelian P, Steinberg M, Katz A.

A consortium of <u>8 centres</u> for prostate <u>SBRT</u> founded in 2011

SBRT with a Total RT dose of <u>35-40 Gy is safe</u> and sufficient to obtain satisfactory clinical outcome in low/intermediate PCa

Radiotherapy

4

ROs

cute/Late Toxicity appears acceptable though the numbers of pts/duration of FUP has been very limited

RS is delivered with **fewer visits** (4-5 in 1 or 2 weeks)

ere is strong evidence it is less expensive than IMRT and consequently more cost effective.

NTRAs

ause both IMRT and SRS have already disseminated into clinical practice,it may be **difficult** for prospective domized clinical trials to enroll patients.

n prospective and observational studies are necessary to better understand differences between erent treatment modalities

g-term follow-up is needed to evaluate biological end-points, such as disease-free survival, metastasissurvival and overall survival

,,,,,Some Concerns!!!!!

THE LANCET Oncology

The Lancet Oncology Commission

Delivering affordable cancer care in high-income countries

Richard Sullivan, Jeffrey Peppercorn, Karol Sikora, John Zolcberg, Neal J Meropol, Eitan Amir, David Khayat, Peter Boyle, Philippe Autier, Ian F Tannock, Tito Fajo, Jim Siderov, Steve Williamson, Silvia Camporesi, J Gordon McVie, Arnie D Purushotham, Peter Naredi, Alexander Eggermont, Murray F Brennan, Michael L Steinberg, Mark De Ridder, Susan A McCloskey, Dirk Verellen, Terence Roberts, Guy Storme, Rodney J Hicks, Peter J Ell, Brafford R Hirsch, David P Carbone, Kevin A Schulman, Paul Catchpole, David Taylor, Jan Geissler, Nancy G Brinker, David Meltzer, David Ker, Matti Aapro

Notably, different societies set different thresholds for what is considered good value or cost effective.

"From MEDICARE fee-for-service database we identified **53,841** patients who received **IMRT** and **1,335** patients who received **SBRT**..."

"SBRT patients were more likely to be white, younger, healthier, from higher income areas, and less likely to undergo ADT, which may indicate less aggressive disease..."

reatment	Mean Cancer- Related Cost (\$)*	95% CI (\$)	Mean Radiation Cost (\$)*	95% CI (\$)	Mean Nonradiation Cancer- Related Cost (\$)*	95% CI (\$)	Mean Complication Cost (\$)*	95% CI (\$)
SBRT	16,608	15,878 to 17,338	13,645	13,370 to 13,921	2,963	2,295 to 3,630	145	69 to 221
IMRT	23,000	22,505 to 23,496	21,023	20,780 to 21,265	1,978	1,535 to 2,420	69	44 to 95

....SBRT is less expensive....

- PSA less than 20 µg/L

HypoRT arm: working-days, 7 fractions of 6.1 Gy, total 42.7Gy The total treatment time is 15 - 19 days.

To demonstrate a **10%** unit increase (70% to 80%) in *freedom from failure* (PSA or any clinical test) in the HYPO-RT arm at **5 years** after the end of treatment

RESEARCH

Change in prostate volume during extreme hypo-fractionation analysed with MRI 2014

Adalsteinn Gunnlaugsson^{1*}, Elisabeth Kjellén¹, Oskar Hagberg², Camilla Thellenberg-Karlsson³, Anders Widmark³ and Per Nilsson⁴

Prostate swelling is known to occur during *brachytherapy*

	before ra	diotherapy (MRI _{base}	_{eline}), in the n	niddle of the treat	nent (MRI _{mid}) and	at the end of	treatment (MRIend	l)
	Pat #	СТ		MRIbaseline	MRImic	1	MRIend	i
	CONCRETING.	Abs. vol. (cm ³)	Rel. vol.	Abs. vol. (cm ³)	Abs. vol. (cm ³)	Rel. vol.	Abs. vol. (cm ³)	Rel. vol
	1	35.3	1.579	22.4	26.7	1.191	27.2	1.217
nts selected by	2	44.5	1.369	32.5	38.6	1.187	34.9	1.074
pes selected by	3	33.8	0.999	33.9	39.0	1.151	33.1	0.976
HYPO-RT-PC	4	47.8	1.105	43.3	47.5	1.098	46.2	1.067
	5	45.8	1.054	43.4	48.9	1.126	48.7	1.122
Phase II Study	6	64.8	1.455	44.5	53.3	1.198	44,1	0.991
	7	71.6	1.597	44.8	49.8	1.112	46.6	1.040
	8	43.5	0.906	48.0	48.7	1.015	48.0	1,000
	9	79.4	1.648	48.2	55.5	1.152	54.4	1.129
	10	73.0	1.511	48,4	48,9	1.011	50,1	1.037
fractions of 6 1	11	59.4	1.102	53.9	60.8	1.128	55.2	1.023
	12	57.0	1.037	54.9	65.3	1.189	64.4	1,172
sy,total 42.7Gy 📔	13	-	-'	57.2	66.6	1.166	62.2	1.089
•	14	83.8	1.196	70.1	88.7	1.265	78.0	1.112
	15	99.0	1.347	73.5	80.0	1.088	74.1	1.008
,	16	79.4	1.066	74.5	95.5	1.282	96.2	1.291
	17	96.5	1.145	84.3	96.8	1.148	_*	-*
	18	105.8	1.242	85.2	96.3	1.131	101.4	1.190
	19	106.2	1.021	104.0	116.8	1.123	115.6	1,112
	20	153.7	1.045	147.1	155.0	1.054	152.9	1.040
	Mean	72.7	1.233	60.7	68.9	1.141	64.9	1.089
	SD	30.4	0.232	28.7	31.3	9,670	31.9	0.084
	p-value [†]	0.0001	0.0004	—	<0.0001	<0.0001	0.0008	0.0002

Table 2 Prostate volumes in descending order as segmented on the treatment planning CT and on the MR images

Open Access

RESEARCH

Change in prostate volume during extreme hypo-fractionation analysed with MRI 2014

Adalsteinn Gunnlaugsson^{1*}, Elisabeth Kjellén¹, Oskar Hagberg², Camilla Thellenberg-Karlsson³, Anders Widmark³ and Per Nilsson⁴

....the prostate seemed <u>to swell most profoundly in the anterior-posterior and cranial-caudal</u> directions. This might indicate that a margin reduction towards the rectum should be applied with caution, especially during extreme hypo-fractionation....

... No lateral direction on the other hand could be due to the pelvic side wall acting as an anatomic barrier....

Daily IGRT correction usually involves 3 markers implanted centrally in the gland, it is probably adequate for prostate motion but less adequate for taking changes in the outer boundaries of the gland into consideration.

Re-contouring followed by re-planning before each fraction could be needed when using narrow margins (≤ 3 mm).

Great care has to be taken to compensate for prostate swelling if the segmentation and treatment planning process is performed with MR-only

Up to 2 mm extra margin could be needed if prostate segmentation is based only on MRI. Adaptive radiotherapy with re-planning before each fraction, which would also take changes in prostate shape into consideration, would be optimal.

Future Perspectives

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

RTOG0938 Multicenter Study- NCT01434290 rted in 2011 - still On Going

TIONALE : RT uses high-energy x-rays to kill tumor cells. Specialized RT that delivers a high dose of radiation directly to the tumor may kill mo tumor cells and cause less damage to normal tissue. <u>Given radiation therapy in different ways may kill more tumor cells</u>.

ROLLEMENT : **240** patients

RPOSE: **Randomized Phase II trial** studies RT to see how well it works in treating patients with Pca

perimental Arm I : IMRT twice a week for approximately 2½ weeks (**36.25 Gy** total, **7,25 Gy/die**) perimental Arm II : IMRT once a day, 5 days a week, for approximately 2½ weeks (**51.6 Gy** total, **4.3Gy/die**)

JECTIVE: 1-year health-related quality of life (HRQOL) for at least one hypofractionated arm is not significantly lower than basel as measured by the the Bowel and Urinary domains of EPIC instrument

Future Perspectives

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

Prostate Advances in Comparative Evidence (PACE) NCT01584258

Started in 2012 - still On Going

PURPOSE: International multicenter Phase III Randomized study for low/intermediate risk Po

Future Perspectives

ClinicalTrials.gov

A service of the U.S. National Institutes of Health

01045148	Phase II	3800 cGy in 4fx Vs 3400 cGy in 5fx in Localized Pca T1b-T2c	2006	Open , Recruiting
00643617	Phase II	3800 cGy delivered in 4Fx for Localized Pca with Ciberknife RadioSurgery	2008	Open , Not Recruiting
00851916	Phase II	Virtual HDR Cyberknife RadioSurgery for Locally recurrent PCa	2009	Open , Recruiting
01226004	Observational	Overview of pts with low/intermediate Pca treated by Radiosurgery	2010	Open
01655836	Phase I	HDR Brachytx Combined With SBRT for Intermediate Risk PCa	2012	Open , Recruiting
T01923506	Phase I	To find MTD with upper limit 45 Gy in 5 Fx in delivering SBRT to prostate fossa	2013	Open , Recruiting 🌉
01737151	Randomized Phase II	4Fx Split-Course SART for Pts with Low/ Intermediate Risk PCa	2013	Open , Recruiting

Conclusions

SBRT, as an **alternative to surgery**, provides **high biochemical control**, low risk of complications, minimal duration of treatment, and outpatient treatment opportunity

Further escalation of SBRT **doses above 38-40 Gy is not warranted** at this time and would not be prudent given the potential for higher rates of grade 3 GI and GU

"Several *technologies in radiation oncology* may provide *cost savings* not only in terms of dollars saved, but also reduced human costs by shortening treatment courses.

In addition, these technologies may allow more pts to have access to necessary treatments"

On going RCTs will help us to understand whether biological dose escalation by exploiting the low alpha/beta ratio of Pca translates into a clinical benefit for pts

THANKS and....

.have a rest!!!!!!