

Cytokines, Fatigue, and Cutaneous Erythema in Early Stage Breast Cancer Patients Receiving Adjuvant Radiation Therapy

Vitaliana De Sanctis, ¹ Linda Agolli, ¹ Vincenzo Visco, ² Flavia Monaco, ¹ Roberta Muni, ¹ Alessandra Spagnoli, ³ Barbara Campanella, ¹ Maurizio Valeriani, ¹ Giuseppe Minniti, ¹ Mattia F. Osti, ¹ Claudio Amanti, ⁴ Patrizia Pellegrini, ⁵ Serena Brunetti, ⁶ Anna Costantini, ⁶ Marco Alfò, ³ Maria Rosaria Torrisi, ² Paolo Marchetti, ⁵ and Riccardo Maurizi Enrici ¹

Radioterapia Oncologica
Università "La Sapienza" di Roma
Facoltà di Medicina e Psicologia
Prof. R. Maurizi Enrici

Dr. Linda AGOLLI

Background

Breast cancer patients receiving adjuvant therapy: cancer-related fatigue prevalence 25-99%*

Biological mechanisms underlying fatigue during RT

Background

Breast cancer patients

Increase of fatigue during adjuvant RT (40 pts) no association with anxiety/depression and/or cytokines levels (TNF- α , IL-1 β , and IL-6)

conservation No significant association between fatigue and biological disorders in 302 pts with breast cancer receiving adjuvant RT and/or chemotherapy

Significant correlation between fatigue and high levels of pro-inflammatory markers (IL-1ra,IL-6, and sTNT-RII)

Geinitz et al. Int J Radiat Oncol Biol Phys 2005 Noal et al. Int J Radiat Oncol Biol Phys 2011

Bower JE, Psychosomatic Medicine 2002 Collado-Hidalgo A Clin Cancer Research 2006

End-points

Prospective study – 40 patients (early-stage breast cancer)
Preliminary investigation, patients with homogeneous characteristics

Primary hypothesis: high-grade erythema of the breast skin during RT

high levels of serum pro-inflammatory cytokines fatigue symptoms

Secondary end-point: assess other factors (hormonal therapy, breast volume, anemia) that may influence cytokine-related biological mechanisms leading to fatigue

TABLE 1: Patients' characteristics (n = 40).

	Number of patients (% of total)
Mean age (years) 55	
Range (years) 40-73	
T, stage	
Tis	19 (48)
T1	21 (52)
N, stage	
N0	40 (100)
Histological type	
DCIS	16 (40)
Ductal	17 (43)
Lobular	2 (5)
Others	5 (12)
Tumor grade (G)	
Poorly differentiated (G3)	10 (25)
Moderately differentiated (G2)	13 (32)
Well differentiated (G1)	17 (43)
Radiotherapy schedule	100000
50 Gy/2 Gy	19 (48)
50 Gy/2 Gy + Boost 10 Gy/2.5 Gy	21 (52)

Inclusion criteria

age ≤ 75 years

conserving surgery

early stage disease

no nodal involvement

standard post-operative radiotherapy

no previous chemotherapy

lack of significant co-morbid conditions

Highly selected population

Treatment – adjuvant EBRT: breast + boost (Stage I pts) 6MV linear accelerator

RT schedule: total dose of 50Gy/25 fr - 5 days per week.

Boost to the tumor bed: total dose of 10Gy/4 fr delivered with a direct electron field

The breast volume in cubic centimeters (cc) was measured for each patient Large breast : volume ≥ 1000 cc

Hormonal therapy was administered to all stage I patients.

Skin Erythema – graded according to RTOG scale

High grade: grade ≥ 2

Diagnosis of cancer-related fatigue according to the criteria described by Cella et al.

- 1. Significant fatigue experienced each day in at least two weeks within the preceding month
- 2. Significant distress or impairment of functioning due to fatigue symptoms
- 3. Clinical evidence of fatigue as a consequence of cancer or cancer therapy
- 4. No concurrent diagnosis of psychiatric disorders (i.e major depressive disorders)

Questionnaires - Anxiety/depression: baseline, weekly, 3 months, 6 months

HADS (Hospital Anxiety and Depression Scale)

Total score range: 0 − 21

Significant clinical levels of anxiety/depression: total score ≥ 11

Questionnaires - Fatigue: baseline, weekly, 3 months, 6 months

Fatigue – FACT-F (Functional Assessment of Cancer Therapy Fatigue) subscale - component of FACT-G quality of life questionnaire

13 items (0-5 points for each item) - total score (range: 0-52) – fatigue severity

Presence of fatigue: final score < 37

fatigue symptoms - score < 37 for two consecutive weeks

no associated depression/anxiety

Cytokines

<u>Blood samples: baseline, weekly during treatment, at 3 months, and at 6 months from RT completion</u>

12 inflammatory cytokines were tested IL-1 α , IL-1 β , IL-2, IL-4, IL-6, IL-8, IL-10, VEGF, EGF, TNF- α , IFN- γ , MCP-1

Simultaneous and serial assessment of plasmatic cytokines: multiplex biochip array in Evidence Investigator equipment (Randox Labs. Ltd. Crumlin, UK)

Control group: 10 healthy volunteers (35-66 years old) to define the cut-off value for each cytokine

Statistical analysis

Heckman two-step equation: heterogeneity between patients other factors that can increase cytokines level (non explain by skin erythema)

- 1. Markers* $it = \beta 0 + \beta 1$ Erythema $it + bi + \varepsilon it$, Markers $it = 1 \leftarrow \rightarrow$ Markers* it > 0, $bi \sim N(0, \sigma 2b)$
- 2. Fatigue* $it = \gamma 0 + \gamma 1$ Breast Volume $i + \gamma 2$ HormoneTherapy $it + \gamma 3$ Markers $it + \gamma 4Mit + ui + eit$, Fatigue $it = 1 \leftarrow \rightarrow$ Fatigue*it > 0, $ui \sim N(0, \sigma 2u)$

<u>Fatigue - anxiety/depression - erythema</u>

17 (42.5%) patients - fatigue symptoms during RT and follow-up

12 (30%) patients - depression/anxiety at baseline /during treatment10 patients - fatigue

7 (17.5%) patients – fatigue symptoms not associated to depression/anxiety

Grade ≥ 2 erythema in 5/7 patients with fatigue symptoms

Grade \geq 2 erythema in 16/40 (38%) patients

Cytokines

6/12 cytokines: significant differences between healthy donors and pretreated breast cancer patients

IL-1 β , IL-2, IL-6, TNF- α , IL-8, and MCP-1: altered in breast cancer patients

IL-1 β , IL-2, IL-6, and TNF- α : significantly increased 4 weeks after RT (P < 0.05, compared to pretreated samples)

	Mean values of cytokines (pg/mL)						
	IL-1β	IL-2	IL-6	IL-8	MCP-1	TNF-α	
HD	0.106	2.103	0.921	3.241	350.54	0.948	
Patients pre-RT	1.9	3.05	2.65	5.309	245.52	1.41	
Patients 4 weeks after RT	4.27	4.84	12.95	19.03	480.38	4.84	
Patients 6 months after RT	3.49	3.58	6.34	7.83	379.97	3.58	
t-test (HD versus pre-RT)	5.42e - 17°	0.00278*	2.44e - 09*	0.42687	0.04959*	7.702e - 05°	
t-test (pre-RT versus 4 w)	0.02682*	0.00016*	0.04853*	0.05191	0.06744	0.00165*	
t-test (pre-RT versus 6 m)	0.09564	0.0673	0.3087	0.05585	0.24408	0.00826*	

^{*}P < 0.05.

Fatigue over time

Cytokines

Erythema Pro-inflammatory Cytokines

Step 1 of Heckman equation

Erythema significantly influenced the increase in pro-inflammatory cytokines levels: IL-1 β , IL-2, IL-6 and TNF- α (p=0.00001)

Variable	Coefficient	Standard Error	P value
	Probit model for th	ne inflammatory ma	ırkers
Intercept	-1.648	0.352	2.87e - 06
Erythema	2.065	0.468	1.01e - 05
σ_b^2	3.792		

Step 2 of Heckman equation

Fatigue symptoms were significantly influenced by increased blood levels of pro-inflammatory cytokines

Variable	Coefficient	Standard Error	P value
1.4 (4.4)	Probit mode	el for the fatigue	1517 150
Intercept	-8.574	3.460	0.0132
Breast volume	0.004	0.003	NS
Inflammatory markers	3.075	1.381	0.0260
Hormone therapy	1.975	1.923	NS
Mi	1.967	0.875	0.0246
σ^2_{μ}	6.722		

NS: not significant.

Conclusions

Fatigue symptoms Pro-inflammatory cytokines (increase during RT)

Concurrent high-grade breast skin erythema

High-grade breast skin erythema during RT might be responsible for biological mechanisms of fatigue, activating serum pro-inflammatory cytokine

Potential modulation of radiation therapy or new drugs erythema-targeted can be developed to reduce skin erythema intensity and fatigue, increasing adherence to therapy and quality of life

Conclusions

Next step

Study long-term fatigue

GRAZIE

