

Single Nucleotid Polymorphisms of XRCC1, XRCC3, RAD51 and associated haplotypes predict for acute toxicity in patients with locally advanced rectal cancer treated with preoperative radiochemotherapy.

Department of Radiation Therapy
University "La Sapienza" Rome
Facoltà di Medicina e Psicologia
Prof. R. Maurizi Enrici

Dott. Luca NICOSIA

Ionizing radiations act through DNA damage

Altered function of those mechanism can lead to low repair ability → more damage

 XRCC1 (G28152A) encode for a protein with low repair activity. Higher incidence of acute and late toxicities in prostate, nasopharingeal and rectal cancer

Vodicka P., et al. Carcinogenesis 2004. Haijun Li , et al. Rad Onc. 2013. Balboa E, et al. Pharmacogenomics 2010. Langsenlehner T, et al. Radiother Oncol. 2011

 RAD51 (G315C) may lead to a m-RNA and a consequent low protein expression. High toxicity in prostate cancer patients.

Russell J.S., et al. Cancer Res. 2003. Levy-Lahad E., et al. ProcNatlAcadSciU.s.A. 2001. Van Oorschot B., et al. IntJRadiatOncolBiol Phys. 2014

 XRCC3 (A4541G) encode for a protein with low repair activity. High rectum and bladder toxicity in prostate and bladder cancer patients.

Damaraju S., et al. ClinCancer-Res. 2006. Fachal L., et al. RadiotherOncol. 2012. Sakano S., et al. Pharmacogenomics. 2010

• XRCC3 (C18067T) encode for a protein with low repair activity. High *in vitro* radiosensitivity

Alsbeith G., et al. IntjRadiatOncolPhys. 2007

 GSTP1 (A313G) therefore a reduced catalytic activity due to an altered affinity with the electrophile substrate

Ambrosone c. B., et al. Breast Cancer Res. 2006

SNPs of XRCC1, XPD, and TP53 may predict acute toxicity in a population of 132 locally advanced rectal cancer patients treated with Neoadjuvant Radiochemotharapy (N-RCT)

Duldulao, et al. Cancer 2013

Rationale

Grade≥3 adverse effects can lead to discontinuity of treatments that can reduce the outcome and may require hospitalitazion with increase in resources spent on patients

In some studies it is reported a rate of acute severe toxicity, after N-RCT with fluoropyrimidine in a range from 1% to 15%.

End-point

Series of 67 patients (locally advanced rectal cancer) treated with N-RCT

Primary end-point: high-grade acute toxicities during N-RCT can be predicted by Single Nucleotid Polymorphisms (SNPs):

XRCC1 G28152A XRCC3 A4541G → XRCC3 C18067T RAD51 G315C GSTP1 A313G

Secondary end-point: high-grade acute toxicities during N-RCT can be predicted by combinations of SNPs

			No. pts
			(% oftot)
Mean a	ge (year	s)	64
Range	(years)		36-85
Gende	r		
-	Male		38 (57)
	Female	2	29 (43)
r, stage	•		
-	T2		7 (10)
-	T3		56 (84)
-	T4		4 (6)
N, stag	e		
-	NO		31 (46.5)
-	N1		29 (43.5)
-	N2		7 (10)
Distanc	e from a	nal verge	
-	≤ 5cm		36 (54)
-	> 5cm		31 (46)
ongitu	ıdinal ex	tension	
-	≤ 5cm		30 (45)
-	> 5cm		37 (55)
Surger	proced	ure	
	-	AR	56 (83.5)
	-	APR	9 (13.5)
	-	TAE	1 (1.5)
	-	No surgery	1 (1.5)

Locally advanced rectal cancer patients

Stage II-III

Blood samples for the study of SNPs

(Pyrosequencing technology)

Neoadjuvant Treatment

3DRT: 1,8Gy in 25 fr (total dose 45 Gy) + concomitant boost on GTV twice weekly, 1 Gy in 10 fr (total dose on GTV 55 Gy)

35 pts: capecitabine at 825 mg m² twice daily for five days a week

32 pts: 5-Fluoruracil (5-FU) at 225mg/mq/day in continuous infusion (c.i) for five days a week

66 of 67 patients underwent surgical resection 8 weeks after N-RCT

Acute toxicities were scored, according to the CTCAE v3.0, in terms of:

Organ-non-specific acute toxicity (gastro-intestinal, hematological, skin and genitourinary)

Organ-specific acute toxicity (diarrhea, abdominal/pelvis pain, rectal discomfort, rectal bleeding, nausea/vomiting, proctitis, haemoglobin, leukocytes, platelets, cistitis, hematuria, urinary frequency/urgency).

Acute toxicity was considered as severe for grade ≥ 3, and when quality of life was significantly impaired.

Patients were classified into three groups for each gene:

- normal homozygous group (NH; patients who doesn't carry the SNP),
- heterozygous group (H; patients heterozygous for the SNP) and mutated
- homozygous group (MH; patients homozygous for the SNP).

NH vs. H NH vs. MH NH vs. H+MH overall acute toxicity organ-non-specific acute toxicity organ-specific acute toxicity

Polymorphisms characteristics.									
Allelic assessment	Polymorphisms								
	XRCC1 G28152A (n=67)	XRCC3 A4541G (n=67)	XRCC3 C18067T (n=67)	RAD51 G315C (n=67)	GSTP1 A313G (n=66)				
NH	NH 26 (39)		40 (60) 31 (46.5)		38 (57.5)				
Н	31 (46)	24 (35)	25 (37)	8 (12)	21 (32)				
MH	10 (15)	3 (5)	11 (16.5)	1 (1.5)	7 (10.5)				

NH: Normal Homozygous; H: Heterozygous; MH: Mutated Homozygous.

Results - Toxicities

Toxicity	Grade 1-2		Gra	de 3-4	Total	
	N.	%	N.	%	N.	%
Gastrointestinal						
Diarrhea	28	(42)	2	(3)	31	(45)
Abdominal/pelvis	6	(9)	4	(6)	10	(15)
pain	16	(24)	6	(9)	22	(33)
Rectal discomfort	5	(7.5)	1	(1.5)	6	(9)
Rectal bleeding	4	(6)	1	(1.5)	5	(7.5)
Nausea/vomiting	21	(31)	0	(O)	21	(31)
Proctitis	16	(24)	1	(1.5)	17	(25)
Skin erythema						
Haematological						
Hemoglobin	6	(9)	2	(3)	7	(12)
Platelets	5	(7.5)	0	(0)	5	(7.5)
Leukocytes	12	(18)	1	(1.5)	13	(19.5)
Genitourinary						
Cystitis	12	(18)	9	(13.5)	21	(31.5)
Hematuria	3	(4.5)	1	(1.5)	4	(6)
Urinary	5	(7.5)	3	(4.5)	8	(12)
frequency/urgency						

Results – Single SNPs analysis

XRCC1 G28152A		XRCC3 A4541G			RAD51 G315C			
NH vs H+MH	NH vs H	NH vs MH	NH vs H+MH	NH vs H	NH vs MH	NH vs H+MH	NH vs H	NH vs MH
0.717	0.619	0.895	0.785	1.0	0.487	0.06	0.036	0.734
0.559	0.661	0.470	0.520	0.594	0.570	0.027	0.017	0.850
0.422		0.102	0.408	0.435	0.749	0.691	0.708	0.895
0.03	0.044	0.061	0.1	0.194	0.015	0.04	0.101	0.074
0.311	0.452	0.367	0.031	0.022	0.001	0.485	0.510	0.815
	NH vs H+MH 0.717 0.559 0.422 0.03	NH vs H+MH NH vs H 0.717 0.619 0.559 0.661 0.422 0.03 0.044	NH vs H+MH NH vs H NH vs MH 0.717 0.619 0.895 0.559 0.661 0.470 0.422 0.102 0.03 0.044 0.061	NH vs H+MH NH vs H NH vs MH NH vs H+MH 0.717 0.619 0.895 0.785 0.559 0.661 0.470 0.520 0.422 0.102 0.408 0.03 0.044 0.061 0.1	NH vs H+MH NH vs H NH vs MH NH vs H+MH NH vs H 0.717 0.619 0.895 0.785 1.0 0.559 0.661 0.470 0.520 0.594 0.422 0.102 0.408 0.435 0.03 0.044 0.061 0.1 0.194	NH vs H+MH NH vs H NH vs MH NH vs H+MH NH vs H NH vs MH 0.717 0.619 0.895 0.785 1.0 0.487 0.559 0.661 0.470 0.520 0.594 0.570 0.422 0.102 0.408 0.435 0.749 0.03 0.044 0.061 0.1 0.194 0.015	NH vs H+MH NH vs H NH vs MH NH vs H+MH NH vs H NH vs MH NH vs H+MH 0.717 0.619 0.895 0.785 1.0 0.487 0.06 0.559 0.661 0.470 0.520 0.594 0.570 0.027 0.422 0.102 0.408 0.435 0.749 0.691 0.03 0.044 0.061 0.1 0.194 0.015 0.04	NH vs H+MH NH vs H NH vs MH NH vs H+MH NH vs H NH vs MH NH vs H+MH NH vs H+MH

Results – Combined analysis

Conclusions

Our study showed a significant correlation between acute severe toxicities and SNPs (XRCC1, XRCC3 and RAD51)

Screening for SNPs <u>before</u> treatment may help to identify patients who are at increased risk of severe toxicity

This can guide clinicians to personalize treatments, selecting patients that can tolerate and complete therapy and will receive the maximum efficacy with minimal morbidity

THANKS FOR YOUR ATTENTION

MAY THE POLYMORPHISMS
BE WITH YOU