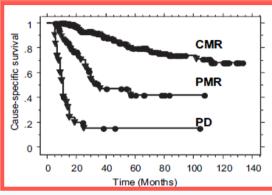
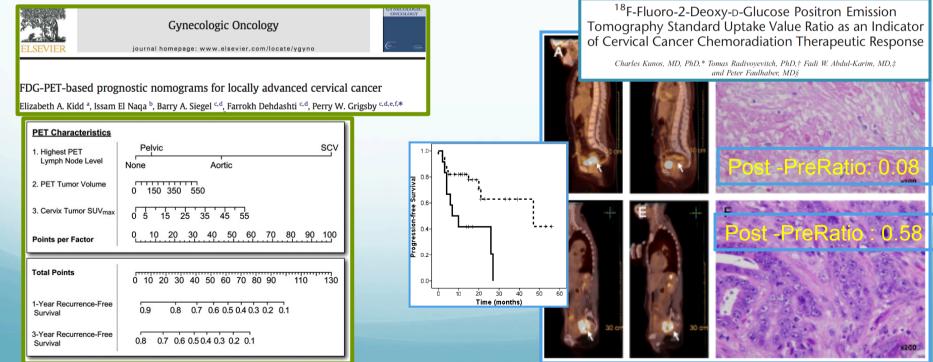


Can FDG-PET Predict Clinical Response and DFS after radio-brachytherapy in Cervix Cancer ?

F. Cellini, L. Lutgens, R. van Stiphout, F. Bakers, A. Krüse, P. Lambin.

Acta Oncologica Symposium

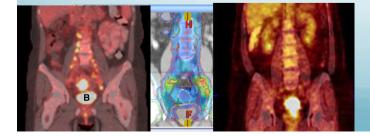

Biology-Guided Adaptive Radiotherapy Aarhus, Denmark - June 11-13, 2013


Background:

Metabolic Response on Posttherapy FDG-PET Predicts Patterns of Failure After Radiotherapy for Cervical Cancer

Julie K. Schwarz, M.D., Ph.D., */[†] Barry A. Siegel, M.D., */[‡] Farrokh Dehdashti, M.D., */[‡] and Perry W. Grigsby, M.D., M.B.A. */^{†,‡,§}

	l metabolic Progres	ssive
(n = 173) response	se $(n = 40)$ disease $(n$	n = 25) Total ($n = 238$)
6	15 1	22
29	5 15	49
5	6 9	20
(23%) 26	5 (65%) 25 (10	0%) 91 (38%)
	6 29 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$



Hypothesis:

1. Pretreatment Metabolic volume and SUVmax predict outcome (DFS) in cervix cancer

2. Clinical response 2-3 months after treatment is a early surrogate of Disease Free Survival and Overall survival

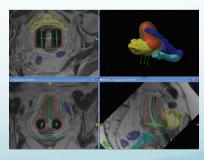
2. SUV ratio (pre/postt) and SUV posttreatment are better clinical response predictor then SUVmax pretreatment

Patients characteristics

Variable	Pre-RT Scan only		Pre+ Post -RT Scan	
Vallable	(N = 82)		(N = 48)	
	N	[%]	N	[%]
FIGO status				
IB	10	[12.2]	2	[4.2]
IIA	8	[9.8]	3	[6.3]
IIB	49	[59.8]	33	[68.8]
IIIA	1	[1.2]	1	[2.1]
IIIB	9	[11.0]	7	[14.6]
IVA	5	[6.1]	2	[4.2]
Bulky tumour				
No	22	[26.8]	10	[20.8]
Yes	60	[73.2]	38	[79.2]
Lymph Nodal Status				
Negative	51	[62.2]	27	[56.3]
Positive	31	[37.8]	21	[43.8]
Hystology				
Squamous Cell Carcinoma	68	[82.9]	39	[81.3]
Adenocarcinoma	8	[9.7]	6	[12.5]
Adenosquamous Carcinoma	4	[4.9]	2	[4.1]
Large Cell Carcinoma	2	[2.4]	1	[2.0]
Age [years]				
Median	55.9		55.5	
Range	29.3 - 89.2		29.3 - 88.3	

- Pts evaluated: underwent PETCT (treated between 2006 and 2012)
- 82 pts with baseline fdgPETCT
- 48 baseline and post treatment

Patients characteristics

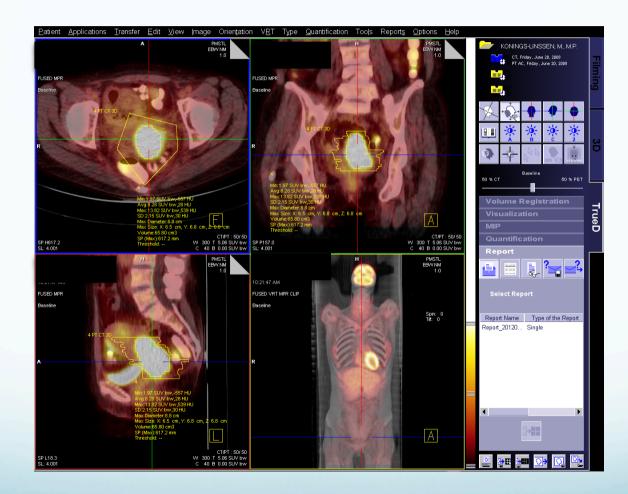

- Baseline: Pts underwent clinical evaluation, including a gynaecologic exam under anaesthesia, MR imaging, fdgPETCT
- Treatment

Treatment Summary

- External beam =
 - Pelvic radiotherapy (lower para-aortic LN irradiation for bulky tumours and/or N+) delivering 45-50.4 Gy with conventional fractionation.
 - N+ \rightarrow additional boost of 16.2 Gy in 9 daily fractions.
- Pelvic radiotherapy was combined with either weekly cisplatin (40 mg/m²) or deep hyperthermia (except for non-bulky tumours FIGO stage ≤ IIA).

- Until 2009= HDR-brachytherapy with 3-4 fractions of 7 Gy to point A was applied.
- Since 2009= MR-image guided adaptive brachytherapy was applied
 (GEC-ESTRO guidelines → EQD2 dose of at least 85Gy to 90% of the high risk CTV)

Patients characteristics


- **Baseline**: Pts underwent clinical evaluation, including a gynaecologic exam under anaesthesia, MR imaging, fdgPETCT
- Treatment

- **2-3 months** after treatment, pts underwent clinical re-evaluation, MR imaging, <u>fdgPETCT (only in 48 pts)</u>

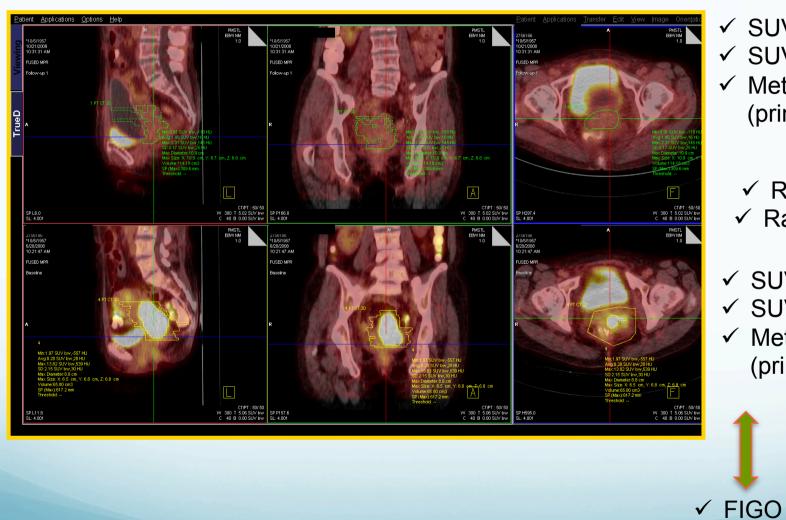


Image analysis

Image analysis

- ✓ SUVMax
- ✓ SUVMean
- ✓ Metabolic Volume (primary tumour)
 - ✓ Ratio SUV Max
 - ✓ Ratio SUV Mean
- ✓ SUVMax

✓ LN +

✓ Bulk

- ✓ SUVMean
- ✓ Metabolic Volume (primary tumour)

✓ OTT

✓ Age

Pre-RT Scan only

(N = 82)

10

8

49

1

9

5

22

60

51

31

68

8

4

[%]

[12.2]

[9.8]

[59.8]

[1.2]

[11.0]

[6.1]

[26.8]

[73.2]

[62.2]

[37.8]

[82.9]

[9.7]

[4.9]

[2.4]

55.9

29.3 - 89.2

Pre+ Post -RT Scan

(N = 48)

[%]

[4.2]

[6.3]

[68.8]

[2.1]

[14.6]

[4.2]

[20.8]

[79.2]

[56.3]

[43.8]

[81.3]

[12.5]

[4.1]

[2.0]

55.5

29.3 - 88.3

Ν

2

3

33

1

7

2

10

38

27

21

39

6

2

Variable

FIGO status

IIA

IIB

IIIA

IIIB

No

Yes

Positive

Hystology

Age [years] Median

Range

IVA /IVB

Bulky tumour

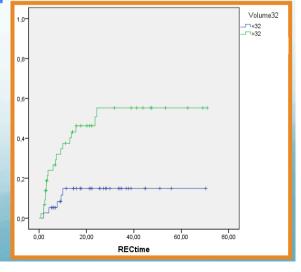
Lymph Nodal Status Negative

Adenocarcinoma

Large Cell Carcinoma

Squamous Cell Carcinoma

Adenosquamous Carcinoma


Recurrence (n=82, only prett PET)

Significance for DFS: Median follow-up 19.6 months (2.4-71)

Univariate analysis:

- FIGO stage [p=0.005],
- Bulk lesion [p=0.047]
- Pretreatment Metabolic Volume PETCT (MV-1) [p=0.004]
- Multivariate analysis: - FIGO [p=0.018]
- Prett MV-1 [p=0.034]

Recurrence free survival plot for the subgroups of pts having a MV-1 over and under 32cc showed an highly significant difference of outcome (p=0.001)

Results:

Clinical Response to treatment (n=48 pre +postt PET)

- For the final analysis pts were grouped as "complete responders" versus "not complete responders".

- **Significant difference** for OS [p < 0.001] and for DFS [p = 0.005] was found between cCR vs non-cCR
- At *univariate analysis*: significant correlation with the probability achieving a clinical complete response to treatment:
 - FIGO stage [p=0.03]
 - Nodal involvement [p=0.04]
 - post PET SUV max [p=0.03]
 - Ratio of SUVMax (prePET/postPET) [p=0.03]
- At *multivariate analysis* only FIGO [p=0.05] and SUVMax2 [p=0.02] remained significant when combined together.

Conclusions:

We confirmed our hypothesis:

1. Pretreatment Metabolic volume (but not SUVmax) predict outcome (DFS) in cervix cancer

2. Clinical response 2-3 months after treatment is a early surrogate of Disease Free Survival and Overall survival

3. SUV ratio and SUV posttreatment is a better clinical response predictor then pretreatment SUVmax pretreatment

- Future prospects: Longer fup, Larger databes (higher n° events), External validation, Radiomics

Acknowledgments:

Prof. Philippe Lambin Ludy Lutgens MD Ruud van Stiphout PhD

