# NSCLC STADIO III TRATTAMENTI INTEGRATI RADICALI





#### S. Arcangeli

U.O.C. Radioterapia Azienda Ospedaliera San Camillo – Forlanini Roma



#### **NSCLC Incidence** The IASLC Lung Cancer Database



#### **Stage III NSCLC Heterogeneity**



Mediastinal Infiltration



Discrete node enlargement



Clinically occult N2



## Stage III "N2/N3 Disease"



**Paramount goals :** 

- to eradicate both visible, intrathoracic disease
- to reduce the incidence of extrathoracic metastases



#### 711 patients 3 randomized trials

O'Rourke N. Clin Oncol 2010



#### 1205 patients 6 randomized trials

Auperin A. J Clin Oncol 2010

Clinical Oncology 22 (2010) 347-355



#### Overview

#### Is Concurrent Chemoradiation the Standard of Care for Locally Advanced Non-small Cell Lung Cancer? A Review of Guidelines and Evidence

N. O'Rourke\*, F. Macbeth †

\* Cochrane Lung Cancer Group, Beatson Oncology Centre, Gartnavel General Hospital, Glasgow, UK † National Institute for Health and Clinical Excellence, London, UK

#### 14% risk of death reduction @ 2y

|            | Median Survival<br>(months) | Treatment-related<br>mortality | G3<br>oesophagitis |
|------------|-----------------------------|--------------------------------|--------------------|
| Concurrent | 16-17                       | 3 %                            | 19 %               |
| Sequential | 13-15                       | 1,7 %                          | 3 %                |

VOLUME 28 - NUMBER 13 - MAY 1 2010

JOURNAL OF CLINICAL ONCOLOGY

#### ORIGINAL REPORT

#### JOURNAL OF CLINICAL ONCOLOGY

Waters With Lafe traps family classify the tick here 2 areas trapsions.
Water J. J. and an of Education 201 control and direct Control trapsics.
Waters J. L. and an of Education 201 control and direct Control trapsics.
Waters J. L. and A. Standard M. Sandard M. Sanda

#### Meta-Analysis of Concomitant Versus Sequential Radiochemotherapy in Locally Advanced Non–Small-Cell Lung Cancer

Anne Aupérin, Cecile Le Péchoux, Esselle Rolland, Walzer J. Curran, Kiyoyuki Pursae, Pierre Fournei, Jose Belderbos, Gerald Clamon, Hakki Cuneye Ulusin, Rebecca Paulus, Takeharu Yamanaka, Marie-Cecile Bozonnas, Apollonia Uiszerboeve, Xiaofei Wang, Lesley Saewars, Rodrigo Arriagada, Sarah Bundez, and Joan-Pierre Pignon



ASCO



In patients with stage III (N2,3) NSCLC and performance status 0-1 combination platinumbased chemotherapy and radiotherapy (60-66 Gy) are recommended (Grade 1A)



## NSCLC A GRIM TALE



## NSCLC

1980s: Definitive XRT

5-y Survival

- 1990s: Sequential chemoradiotherapy
- 2000s: Concurrent chemoradiation

| Site     | 1976 | 1982 | 1994 | 2008 |
|----------|------|------|------|------|
| Breast   | 75   | 76   | 85   | 90   |
| Colon    | 50   | 55   | 63   | 65   |
| Prostate | 67   | 73   | 93   | 100  |
| Rectum   | 48   | 52   | 61   | 68   |
| Lung     | 12   | 13   | 14   | 17   |

CA CANCER J CLIN 2013





## Stage III NSCLC AND Third-Generation Chemotherapy

| Phase II trials of platinum and pemetrexed and thoracic radiation for stage III disease |                                                                                                                                                                                  |                          |                                          |                                                   |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|---------------------------------------------------|--|
| Authors                                                                                 | Treatment                                                                                                                                                                        | Number<br>of<br>patients | Thoracic<br>radiation<br>therapy<br>(Gy) | Median overall<br>survival,<br>months (95%<br>CI) |  |
| Govindan et al. <sup>13</sup>                                                           | Arm A:<br>Carboplatin (AUC = 5)<br>Pemetrexed (500 mg/m <sup>2</sup> ) every<br>21 days <sup>a</sup> $\times$ 4, followed by<br>pemetrexed (500 mg/m <sup>2</sup> ) $\times$ 4   | 48                       | 70                                       | 21.2 (17.1-NA)                                    |  |
|                                                                                         | Arm B:<br>Carboplatin (AUC = 5)<br>Pemetrexed (500 mg/m <sup>2</sup> )<br>Cetuximab <sup>a</sup> × 4 followed by<br>pemetrexed (500 mg/m <sup>2</sup> ) × 4                      | 53                       | 70                                       | 25.2 (14.4-NA)                                    |  |
| Gadgeel et al. <sup>14</sup>                                                            | Cisplatin (75 mg/m <sup>2</sup> )<br>Pemetrexed (500 mg/m <sup>2</sup> ) every<br>21 days × 3 followed by<br>docetaxel (75 mg/m <sup>2</sup> ) every 21<br>days × 3 <sup>b</sup> | 28                       | 66                                       | 34                                                |  |
| Xu et al. <sup>16</sup>                                                                 | Carboplatin (AUC = 5)<br>Pemetrexed (500 mg/m <sup>2</sup> ) every<br>21 days × 5 cycles                                                                                         | 21                       | 6066                                     | NA                                                |  |
| Brade et al. <sup>15</sup>                                                              | Cisplatin 20 mg/m <sup>2</sup> on days 1–5<br>Pemetrexed (500 mg/m <sup>2</sup> ) every<br>21 days × 4 cycles                                                                    | 39                       | 6166                                     | 19.7                                              |  |
| Choy et al. <sup>17</sup>                                                               | Arm A:<br>Carboplatin (AUC = 5)<br>Pemetrexed (500 mg/m <sup>2</sup> ) every<br>21 days $\times$ 3 followed by<br>pemetrexed 500 mg/m <sup>2</sup> $\times$ 3                    | 34°                      | 64-68                                    | NA                                                |  |
|                                                                                         | Arm B:<br>Cisplatin (75 mg/m <sup>2</sup> )<br>Pemetrexed (500 mg/m <sup>2</sup> ) × 3<br>followed by pemetrexed (500<br>mg/m <sup>2</sup> ) × 3                                 | 38°                      | 64–68                                    | NA                                                |  |

#### Stage III NSCLC RT & Monoclonal Antibodies



#### Stage III NSCLC RT & Monoclonal Antibodies

JOURNAL OF CLINICAL ONCOLOGY



ASCO

#### Tracheoesophageal Fistula Formation in Patients With Lung Cancer Treated With Chemoradiation and Bevacizumab



#### Induction (weeks 1-7)

Bevacizumab (B) 15 mg/kg IV, weeks 1 and 4 (2 courses) Pemetrexed (P) 500 mg/m<sup>2</sup> IV, weeks 1 and 4 (2 courses) Carboplatin (C) AUC 5 IV, weeks 1 and 4 (2 courses) Radiation (RT) 1.8 Gy single daily dose, Monday-Friday, to total dose 61.2 Gy

#### Break (weeks 8-15)

Consolidation (weeks 16-24) Bevacizumab (B) 15 mg/kg IV weeks 16, 19, and 22 (3 courses) Pemetrexed (P) 500 mg/m<sup>2</sup> IV, weeks 16, 19, and 22 (3 courses) Carboplatin (C) AUC 6 IV, weeks 16, 19, and 22 (3 courses)

#### Maintenance (weeks 25-51) for CR, PR, Stable Disease

Week 25 | \_\_\_\_ | 51 Restaging was every 9 weeks. Off study for disease progression. ↑ B

Bevacizumab (B) 15 mg/kg IV every 3 weeks (weeks 25, 28, 31, 34, 37, 40, 43, 46, and 49; 9 courses)



## Stage III NSCLC RT & TKI's inhibitors



## Stage III NSCLC AND Novel Biologic Agents

Novel biologic agents in combination with chemoradiation are not recommended outside a clinical trial

A confirmatory intergroup trial, RTOG 0617, is currently evaluating the addition of cetuximab to CRT in a phase III setting

Journal ₀ Thoracic Oncology®

2013

Underuse of Radiotherapy in Lung Cancer Has Negative Consequences for Patients

Indication for Initial Radiotherapy Treatment in Lung Cancer, Number of Cases, Potential Survival Benefit and Benefit not Received

| NSCLC/Stage                 | RT Type | Indication <sup>a</sup> | Percentage of<br>Cases in Stage | Benefit<br>(mo) | Source     | Difference<br>R/T <sup>b</sup> | Months of Benefit<br>not Received |
|-----------------------------|---------|-------------------------|---------------------------------|-----------------|------------|--------------------------------|-----------------------------------|
| I/II inoperable             | RTr     | 1b                      | 20±1.8                          | 14/18           | 23, 24, 25 | -80                            | 1120/1440                         |
| I/II /IIIa postsurgery      | RTr     | 2c                      | 8                               | 4.8             | 26, 27     | -41                            | 196.8                             |
| IIIa potentially resectable | RTr+CT  | 1b                      | $75\pm10$                       | 5-8             | 28, 29, 30 | -66.5                          | 332/532                           |
| IIIb PS 0-1                 | RTr+CT  | 1a                      |                                 | 5-8             | 30, 31, 32 | -98.25                         | 491/786                           |
| IIIb PS>2, weight loss      | RTp     | 1a                      |                                 | 1.8             | 33, 34, 35 | -98.25                         | 176.8                             |
| IV                          | RTp     | 1a                      | 35±7                            | 1.8             | 21         | -230                           | 419.4                             |
| SCLC limited                | RTc.    | 1a                      | 34±3                            | 2.4             | 36         | -126                           | 302.4                             |
|                             |         |                         |                                 |                 |            | Total                          | Total                             |
|                             |         |                         |                                 |                 |            | -740                           | 3038.4/3553.4                     |

So far, concurrent chemotherapy with radiotherapy to a dose of 60 Gy in 30 daily fractions is considered the standard treatment

#### Locoregional control rate @ 3 yrs = 38%

Journal of Thoracic Oncology 2012



HIGHER BIOLOGICALLY EFFECTIVE DOSE OF RADIOTHERAPY IS ASSOCIATED WITH IMPROVED OUTCOMES FOR LOCALLY ADVANCED NON–SMALL CELL LUNG CARCINOMA TREATED WITH CHEMORADIATION: AN ANALYSIS OF THE IJROBP 2012 RADIATION THERAPY ONCOLOGY GROUP

RT dose intensity ensure a 4% relative improvement in survival for every 1 Gy BED increase

#### HIGHER BIOLOGICALLY EFFECTIVE DOSE OF RADIOTHERAPY IS ASSOCIATED WITH IMPROVED OUTCOMES FOR LOCALLY ADVANCED NON-SMALL CELL LUNG CARCINOMA TREATED WITH CHEMORADIATION: AN ANALYSIS OF THE **RADIATION THERAPY ONCOLOGY GROUP**

1 IDARD 2012

| IJROBP 2012                                                                           | Chemoradiotherapy dose intensity and outcome: review of selected literature |                                                |                         |                      |                                            |                                              |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|-------------------------|----------------------|--------------------------------------------|----------------------------------------------|
|                                                                                       |                                                                             | Nominal RT<br>dose/fraction size               | Approxir<br>dose intens | mate RT<br>sity (BED | )                                          |                                              |
| Study                                                                                 | No. of Patients                                                             | Conventional                                   | RT dose inten           | sity                 | Type of chemotherapy                       | Survival                                     |
| West Japan<br>RTOG 9410 Arm #2<br>LAMP<br>SWOG 9504                                   | 148<br>201<br>92<br>83                                                      | 56 Gy/2<br>60 Gy/2<br>63 Gy/1.8<br>61.2 Gy/1.8 | 61<br>72<br>74<br>72    | 7<br>2<br>4<br>2     | MVdP<br>Cis/Vlb<br>Cbo/Tax<br>Cis/Etop/Doc | 16.5 mo.<br>17.0 mo.<br>16.1 mo.<br>26.0 mo. |
|                                                                                       |                                                                             | Intermediate dose                              | e intensity RT          |                      |                                            |                                              |
| Japanese Jeremic trial<br>RTOG 9410 Arm #3<br>CALGB 39801                             | 65<br>193<br>366                                                            | 69.6 Gy/1.2<br>69.6 Gy/1.2<br>66 Gy/2          | bid<br>bid              | 78<br>78<br>79       | Cbo/Etop<br>Cis/Etop<br>Cbo/Tax            | 22.0 mo.<br>15.2 mo.<br>14.0 mo.             |
|                                                                                       |                                                                             | Dose inter                                     | nse RT                  |                      |                                            |                                              |
| RTOG 0117<br>CALGB 30105<br>NCCTG N0028<br>University of North<br>Carolina Consortium | 63<br>43<br>20<br>62                                                        | 74 Gy/2<br>74 Gy/2<br>70-78Gy<br>74 Gy/2       | /2                      | 89<br>89<br>89<br>89 | Cbo/Tax<br>Cbo/Tax<br>Cbo/Tax<br>Cbo/Tax   | 26 mo.<br>25 mo.<br>42 mo.<br>25 mo.         |



The effect of radiation dose on survival is independent of whether chemotherapy is given

Wang L. IJROBP 2009

# Stage III NSCLC AND Dose escalated RT & Concurrent Chemo Phase I-II trials

| Study                  | Radiation dose<br>(Gy) | Chemotherapy           | Median survival<br>time (months) |
|------------------------|------------------------|------------------------|----------------------------------|
| RTOG 0117<br>PET FDG   | 74                     | Carboplatin/paclitaxel | 21.6                             |
| NCCTG 0028<br>PET FDG  | 74                     | Carboplatin/paclitaxel | 37                               |
| North Carolina         | 74                     | Carboplatin/paclitaxel | 24                               |
| Wake Forest            | 74                     | Gemcitabine            | 18                               |
| CALGB 30105<br>PET FDG | 74                     | Carboplatin/paclitaxel | 24                               |

## Stage III NSCLC AND RTOG 0617

#### <u>Arm A</u>

Concurrent chemotherapy: Carboplatin & Paclitaxel

RT to 60 Gy, 5 x per week for 6 weeks

Arm B: Closed 6/17/11

<u>Concurrent chemotherapy:</u> Carboplatin & Paclitaxel

RT to 74 Gy, 5 x per week for 7.5 weeks

Arm C 1-year OS: 81% in the 60 Gy arm vs 70.4% in the 74 Gy arm (p=0.02)

Cetuximab Loading Dose: Week 1, Day 1 then Concurrent chemotherapy, Carboplatin & Paclitaxel, and Cetuximab

RT to 60 Gy, 5 x per week for 6 weeks Arm D: Closed 6/17/11

Cetuximab Loading Dose: Week 1, Day 1 then Concurrent chemotherapy, Carboplatin Paclitaxel, and Cetuximab

RT to 74 Gy, 5 x per week for 7.5 weeks





Deaths related to the effects on the normal lungs and perhaps the heart from high-dose 3D-CRT and IMRT?

#### Letter

2013

Dose-escalated Radiotherapy for Stage III Unresectable Non-small Cell Lung Cancer: Have We Come to a Standstill?

Arm B: Closed 6/17/11

Concurrent chemotherapy: Carboplatin & Paclitaxel

RT to 74 Gy, 5 x per week for 7.5 weeks

Arm D: Closed 6/17/11

<u>Cetuximab Loading Dose:</u> Week 1, Day 1 then <u>Concurrent chemotherapy, Carboplatin</u> <u>Paclitaxel, and Cetuximab</u>



S. Arcangeli, V. Donato Radiotherapy Department, S. Camillo-Forlanini Hospital, Rome, Italy

Dose escalation by extending the course of treatment over more days incurs extra tumor cell repopulation during the course of treatment, lessening the benefit of the extra dose

#### Letter

2013

Dose-escalated Radiotherapy for Stage III Unresectable Non-small Cell Lung Cancer: Have We Come to a Standstill?



S. Arcangeli, V. Donato Radiotherapy Department, S. Camillo-Forlanini Hospital, Rome, Italy

#### **<u>3 RTOG trials</u>**

loss of survival of 1.6% per day of prolongation
>6 weeks [Fowler '02]

 risk of death >2% for each day of prolongation in concurrent CT-RT [Machtay '05]

#### Stage III NSCLC A lesson NOT learned!

INT 0123 (Radiation Therapy Oncology Group 94-05) Phase III Trial of Combined-Modality Therapy for Esophageal Cancer: High-Dose Versus Standard-Dose Radiation Therapy



#### Stage III NSCLC How to go beyond 60 Gy ?



# Radiation schedules other than conventional fractionation

## Stage III NSCLC AND Hyperfractionatated RT

Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial



CHART: 54 Gy/12 days (1.5 Gy/fr TID)

Radiother Oncol 1999

## Stage III NSCLC AND Hyperfractionatated RT

Phase III randomised trial

Final results of the randomized phase III CHARTWEL-trial (ARO 97-1) comparing hyperfractionated-accelerated versus conventionally fractionated radiotherapy in non-small cell lung cancer (NSCLC)



#### CHARTWEL: 60 Gy/40 fr/2.5 wks

Radiother Oncol 2011

## Stage III NSCLC AND Hyperfractionatated RT Meta-Analysis of Radiotherapy in Lung Cancer MAR-LC

- 2000 patients with NSCLC/10 trials
- Modified fractionation (accelerated or hyperfractionated RT) improved OS as compared to conventional RT
- HR=0.88 (95% CI 0.80-0.97, p=0.009), resulting in an absolute benefit of 2.5% at 5 years (from 8.3% to 10.8%)

Mauguen A. JCO 2012

## Stage III NSCLC AND Hypofractionated RT

Radiation Oncology

2001

A NEW APPROACH TO DOSE ESCALATION IN NON-SMALL-CELL LUNG CANCER



## Stage III NSCLC AND Hypofractionated RT

Radiation Oncology

2013

Image guided hypofractionated 3-dimensional radiation therapy in patients with inoperable advanced stage non-small cell lung cancer.

- 30 patients with advanced NSCLC
- 57% stage IIIA-B
- 60 Gy/20 fr to primary tumor and positive nodes
- grade 3 late adverse effects: 2 pneumonitis, 1 esophagitis
- OS @ 2 years: 38%



# Stage III NSCLC AND Hypofractionated RT&CT

Original article

2013 Accelerated hypo-fractionated radiotherapy for non small cell lung cancer: Results from 4 UK centres

- 609 NSCLC patients from 4 UK centers
- 36% stage IIIA-B
- 55 Gy/20 fr/4 weeks (without ENI)
- 1/3 received sequential chemo-radiotherapy
- no grade III V toxicities
- OS @ 2 years: 50% @ 5 years: 20%

## Stage III NSCLC AND Hypofractionated RT&CT



frontiers in N RADIATION ONCOLOGY

Moderately Escalated Hypofractionated (Chemo)Radiotherapy Delivered with Helical Intensity-Modulated Technique in Stage III Unresectable

#### Non-Small Cell Lung Cancer

Vittorio Donato, Stefano Arcangeli, Alessia Monaco, Cristina Caruso, Michele Cianciulli, Genovera Boboc, Cinzia Chiostrini, Roberta Rauco and Maria Cristina Pressello



## Stage III NSCLC AND Ongoing Trials

#### RTOG 1106/ACRIN 6697

#### RANDOMIZED PHASE II TRIAL OF INDIVIDUALIZED ADAPTIVE RADIOTHERAPY USING DURING-TREATMENT FDG-PET/CT AND MODERN TECHNOLOGY IN LOCALLY ADVANCED NON-SMALL CELL LUNG CANCER (NSCLC)

| S<br>T<br>R<br>A<br>T | Stage       1. IIIA       2. IIIB       Primary Tumor       Size       1. > 5 cm       2. ≤ 5 cm | <sup>3</sup> R<br>A<br>D<br>O<br>M                                                                                                                                                                      | Arm 1: Concurrent Chemoradiotherapy<br>RT to 50 Gy in 25 fractions (nominally 5 fx/week)<br><sup>4</sup> Carboplatin and paclitaxel weekly | F<br>D<br>G                                                                                                                                                                                                                       | A total of 60 Gy in 30 daily fractions<br>(nominally 5 fx/week) |
|-----------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| I<br>F<br>Y           | Histology<br>1. Squamous<br>2. Non-<br>Squamous                                                  | ology I Arm 2: Concurrent Chemoradiotherapy   ology I RT to 46.2 Gy in 21 fractions (nominally 5 fx/week)   Squamous Z Carboplatin and paclitaxel weekly   Squamous E Carboplatin and paclitaxel weekly | P<br>E<br>T                                                                                                                                | Arm 2: Adaptive radiotherapy, <u>based on</u> during-RT<br>FDG-PET/CT scan and resimulation with CT<br>scan with carboplatin and paclitaxel for a<br>total of 6 weekly cycles<br>19.8-34.2 Gy in 9 fractions: overall total of up |                                                                 |

#### ClinicalTrials.gov

Dose Escalation by Boosting Radiation Dose Within the Primary Tumor Using FDG-PET-CT Scan in Stage IB, II and III NSCLC (PET Boost)

to 80.4 Gy in 30 daily fractions in 6 weeks

Individualized to MLD 20 Gy

Whole tumor boost

RADIATION THERAPY

ONCOLOGY GROUP

Patients in this arm will receive radiotherapy (66Gy) in 24 fractions of 2.75 Gy with an integrated boost to the primary tumor as a whole

Boost 50% SUV area

Patients in this arm receive radiotherapy (66Gy) in 24 fractions of 2.75Gy with an integrated boost to the 50% SUVmax area of the primary tumor (of the pre-treatment FDG-PET-CT scan)

# NSCLC The End of the Era of Therapeutic Nihilism?



Seminars in Radiation Oncology 2010