WORKSHOP Tossicità nel management del carcinoma mammario in stadio iniziale

TOSSICITA' NELLE ASSOCIAZIONI CON LE TERAPIE SISTEMICHE

Icro Meattini

Radioterapia Oncologica Azienda Ospedaliero - Universitaria Careggi, Firenze

OVERVIEW

Background

Adjuvant chemotherapy

Trastuzumab and biologic drugs

Conclusions

OVERVIEW

Background

Adjuvant chemotherapy

Trastuzumab and biologic drugs
 Indiana Padioterapia Oncologica
 Conclusions
 Glardini Naxos - Taormina, 26 - 29 ottobre

BACKGROUND

- •In breast cancer, radiation therapy improves local control rate and survival.
- •When chemotherapy and radiation are indicated the sequencing of the two treatments is still debated.
- •The optimal sequencing of chemotherapy and radiotherapy after surgery was largely studied but remains controversial.

Huang (4)			RT administration						
	Study	No of patients	Follow-up (m	RT timing (m)	LRR (%)	p-Value	os	p-Value	
	Hartsel (38)	84	62	<4	2	<0.05	-	>0.05	
Benk (3 (a				>4	14				21
Benk (5 (a	Buchholz (59)	105		>6 <6	2 24	<0.05	80 52	0.016	ľ
Vujovic (2	Recht (60)	295	78	<4 >4	5 35	<0.05	NP	NP	til
Nixon (24	Leonard (61)	262	50?	<4 4–6 >6	5 3–5 2	>0.05	84 95 96	>0.05	ı
Whelan (2	Meek (62)	297			4 2	>0.05	91 83	NP	ı
Bahena (2	Yock (63)	279	84	<5 5–7 >7	5.5 4.8 7.4	>0.05	NP	NP	63-
Slotman (Dendale (64 (abstract)	283	83–136	NP CT first vs. RT first group	CT: 24.4 RT: 11	<0.03	9	-	ı
	Mc Cormick (65)	471	53–77	mst group	RT: 4 CT: 14 San: 4	>0.05			Э,
Hebert-Cr	Buzdar (66)	552	133			>0.05			ш
Hershman	Recht, Bellon (67, 36)	244	135		38 (CT) 31 (RT)	>0.05	73 81	0.11 p: 0.41	ľ
	Benchalal (68)	1831	102	After BCS After 3 CT	92	<0.001 NS in multivariate analysis	48.4 76.9	<0.001	2-1
				After 6 CT	81.5 87.4 (L-D				
	Metz (69)	221	50	<2 2–6 >6	13 4 12	>0.05	NP	NP	O
rea	Hickey BE (70) Cochrane Collaboration Study (Review)	244 853 concurrent (2	rials)	7 m vs. >7 m		>0.5	ouner. I		20

BACKGROUND

•Concomitant radio-chemotherapy remains in principle an attractive treatment schedule to provide an additive interaction of tumor control and shortening the overall treatment time.

Bese NS. Clin Oncol (R Coll Radiol). 2009;21:532-5. Ruo Redda MG, et al. Cancer Treat Rev. 2002;28:5-10.

OVERVIEW

Background

Adjuvant chemotherapy

Trastuzumab and biologic drugs

Italiana
Radioterapia
Oracologica

Conclusions

Glardini Naxos - Taormina, 26 - 29 ottobre

CMF

- •156 patients underwent CMF chemotherapy and radiotherapy, either concurrently (CCRT group, 88 patients) or sequentially (SCRT group, 68 patients).
- •The planned radiotherapy was completed in every patient.
- •No grade 3 or 4 late treatment-related toxicity was observed in the CCRT or SCRT group. Compliance to the treatment as well as cosmetic outcome of the two groups were comparable.
- •On multivariate analysis, concomitant administration of chemotherapy and radiotherapy was associated with improved local-regional control (p = 0.0463).

CMF

- •206 patients randomized to concurrent or sequential radiotherapy with CMF regimen (Phase III trial).
- •No differences in 5-year breast recurrence-free, metastasisfree, disease-free, and overall survival were observed in the two treatment groups.
- •All patients completed the planned radiotherapy.
- •No evidence of an increased risk of toxicity was observed between the two arms.
- •No difference in radiotherapy and in the chemotherapy dose intensity was observed in the two groups.

	FNC + RT $(n = 324)$	$FEC \rightarrow RT$ $(n = 314)$	p
Type of toxicity			
Leukopenia, Grade 3–4	43 (14)	4 (<1)	$< 10^{-4}$
Anemia, Grade 3	2 (<1)	0	0.49
Nausea voniting, Grade 3 4	30 (12)	54 (10)	0.065
Febrile neutropenia with hospitalization*	10 (1)	1 (<1)	0.007
Alopecia, Grade 2–3	27 (8)	154 (50)	<10
Skin toxicity at RT end [†] Grade 0	22 (7)	27 (12)	0.03*
Grade 1	23 (7) 206 (64)	37 (12) 208 (67)	0.03
Grade 2	78 (24)	54 (18)	
Grade 3	16 (5)	10 (3)	
Cardiotoxicity	(-)	(-)	
No. of patients evaluated at 1 y	274	267	
Grada 1. I VEE dagrage >15%	7	2	
Grade 2: LVEF decrease ≥15%§			
under normal range	10 (6)	4(2)	0.02^{\parallel}
Grade 3: Grade 2 + clinical symptoms	U	U	
3-y locoregional toxicity			
Lymphoedema (277/272)	50 (18)	42 (15)	0.41
Pigmentation (274/271)	72 (26)	50 (21)	0.10
Telangiectases (274/271)	55 (20)	36 (13)	0.034

CNF - ARCOS

- Between February 1996 and Ap
- •716 patients
- •Mitoxantrone (12 mg/m²), fluorou cyclophosphamide (500 mg/m²) days for 6 courses.

•Node-positive subgroup, the 5-year LRFS was statistically better in the concurrent arm (97% versus 91%; p=0.02), risk of locoregional recurrence decreased by 39% (HR, 0.61; 95% CI 0.38-0.93).

CNF – ARCOSEIN trial

- •Acute locoregional and systemic toxicity was mild in both arms.
- •Esophagitis was more frequent in the concurrent arm (p=0.04).
- •Nausea/vomiting was significantly higher in the sequential treatment arm (p=0.008).

- •Subcutaneous fibrosis, telangectasia, pigmentation, and breast atrophy were significantly increased in the concurrent arm.
- No statistical difference was observed between the two arms concerning grade 2 or greater pain, breast edema, and lymphedema.

... beyond CMF/CNF

- •Pilot studies showed the feasibility of simultaneous administration using CMF or CNF regimens.
- •However, CNF is no longer considered as standard adjuvant chemotherapy because of secondary acute myeloid leukemia risk.

Chaplain G, et al. J Clin Oncol 2000;18:2836–2842 Crump M, et al. J Clin Oncol 2003;21:3066–3071

•CMF has been largely replaced by anthracyclines in high risk patients.

Early Breast Cancer Trialists' Collaborative Group. Lancet. 2005;365:1687-1717

Bese NS. Clin Oncol (R Coll Radiol). 2009;21:532-5

Toxicity Anemia	Group A No (%)	Group B No (%) p v	
Grade I	35 (32.4%)	25 (19.2%)	0.009
Grade II	13 (12%)	7 (5.4%)	
Grade III	2 (1.9%)	I (I.3%)	
Grade IV	0	, ,	
Neutropenia			
Grade I	13 (12%)	15 (11.5%)	0.4
Grade II	27 (25%)	26 (20%)	
Grade III	8 (7.4%)	8 (6.2%)	
Grade IV	2 (1.9%)	0	
Thrombopenia			
Grade I	2 (1.9%)	2 (1.5%)	0.341
Grade II	2 (1.9%)	0	
Grade III	I (0.9%)	0	
Grade IV	0	I (0.8%)	

CMF.

effect of =0.062), EFS

2/3/4 skin 5%; p=0.013).

Anthracyclines

- •60 patients (2002-2007)
- •Anthracyclines-based regimens (doxorubicin plus cyclophosphamide or epirubicin followed by CMF)

- •Acute skin G3 (8.9%) and G4 (1.7%) toxicity
- •10.7% LVEF decline >10% and <20%
- •Radiotherapy stopped in 21.3% and chemotherapy in 57.1%

Anthracyclines

 Concomitant administration of anthracyclines (e.g. doxorubicin, epirubicin) is associated with and increased risk of serious skin toxicity.

> Fiets WE. et al. Eur J Cancer. 2003;39:1081-1088 Ismaili N, et al. Radiation Oncology. 2009;4:12

 Concerning concomitant treatment, limited data are available but it should be avoided due to the potential risk of augmented cardiac toxicity. Valagussa P. et al. Ann Oncol. 1994;5:209-216

Shapiro CL, et al. N Engl J Med. 2001;344:1997-2008

 Avoiding concomitant use of RT and anthracylines-based chemotherapy remains the standard of care

Taxanes

- •20 patients (1998-1999) received concurrent adjuvant RT and paclitaxel after doxorubicin-based CT.
- 65% developed > G2 cutaneous toxicity
- (33% G3)
- High incidence pulmonary toxicity (20%)
- Concurrent radiation and paclitaxel should be approached cautiously.

Taxanes

- •RT plus paclitaxel after AC regimen.
- •24 patients (1999-2001). Follow-up 11.5 months
- •33.3% patients had RT stops (median 3.5 days)
- None had a chemotherapy dose reduction.
- No cases of pneumonitis.
- Concurrent treatment was well tolerated.

		NCLtoxic	city grade
	1	2	3
Hematologic			
Absolute neutrophil count	5	13	10
Hemoglobin	20	5	
Platelets	5	0	
Febrile neutropenia	0	0	
Nonhematologic			
Hypersensitivity reaction	5	0	All pa
Fatigue	48	15	All po
Deep vein thrombosis/	0	0	Noda
pulmonary embolism			
SGOT/SGPT	8	8	Tange
Arthralgia	28	18	
Myalgia	43	10	Week
Nausea	20	3	Noda
Vomiting	10	0	Tange
Stomatitis	8	0	
Diarrhea	10	5	Every
Dyspepsia	10	0	Noda
Sensory neuropathy	50	5	Tange
Hypertension	3	0	Tung
Hyperglycemia	8	3	IMN

C
J

33

		Pneumonitis (any grad		
Patient subset	No.	No.	Percent	
All patients	40	7	18%	
Nodal irradiation	27	6	22%	
Tangents, only	13	1	8%	
Weekly paclitaxel	16	3	19%	
Nodal irradiation	10	2	20%	
Tangents, only	6	1	14%	
Every-3-week paclitaxel	24	4	17%	
Nodal irradiation	17	4	24%	
Tangents, only	7	0	070	
IMN radiotherapy				
Yes	8	1	13%	
No	32	6	19%	
Radiation dermatitis				
Grade 0–1	32	6	19%	
Grade 2	8	1	13%	

 Weekly concurrent feasible.

Burstein HJ, et al. IJROBP. 2006;64:496-504

Taxanes

 Potent radiosensitizing effect through cell cycle arrest at the G2-M junction.

> Hennequin C, et al. Cancer Res. 1996;56:1842-50 Milas L, et al. Semin Radiat Oncol. 1999;9:12-26

 Potential increase in therapeutic ratio for concurrent chemo-radiotherapy.

Mason KA, et al. Clin Cancer Res. 1999;5:4191-8

•Increase the risk of pneumonitis and dermatitis.

Taghian AG, et al. J Natl Cancer Inst. 2001;93:1806-11 Bellon JR, et al. IJROBP. 2000;48:393-7

 Longer follow up needed, no definitive conclusions about safety.

Giardini Naxos - Taormina, 26 - 29 ottobre

OVERVIEW

Background

Adjuvant chemotherapy

Trastuzumab and biologic drugs

Conclusions

Giardini Naxos - Taormina, 26 - 29 ottobre

Trastuzumab and RT

- •In pivotal trials (B-31, N-9831, BCIRG 006), RT was always administered **concurrently** with trastuzumab.
- •Limited RT information was available from the joint analysis of the B-31 and N-9831 trials.
- •Interim subgroup analysis of patients stratified by surgery type/RT revealed improved DFS in the trastuzumab with paclitaxel arm.

Romond EH, et al. N Engl J Med. 2005;353:1673-1684 Halyard MY, et al. J Clin Oncol 2009;27:2638-2644

Trastuzumab and RT

•Higher incidence of leukopenia occurred in patients who received $AC \rightarrow T \rightarrow H$ compared with those who received $AC \rightarrow T$ (odds ratio=1.89; 95% CI, 1.25 to 2.88).

- •In the group treated with $AC \rightarrow T \rightarrow H$, the 3-year cumulative incidence of cardiac events was **2.7%** with or without RT.
- •In the group treated with $AC \rightarrow TH \rightarrow H$, the 3-year cumulative incidence of cardiac events was **1.7%** and **5.9%** with or without RT, respectively.

Large Investigational Studies

- •Grade 3 acute skin toxicity (3.9%) and esophagitis (0.3%)
- •Grade 2 late telangiectasia (3.5%), local pain (2.8%), and fibrosis (7%)
- •Asymptomatic LVEF alteration (50%), thromboembolic event (18.2%), ischemic cardiomyopathy (6.8%), pericarditis (4.5%), hypertrophic cardiomyopathy (2.3%), and arterial hypertension (2.3%)
- Cumulative incidence of cardiac events was 13.3%
- No cardiac-related deaths occurred

Large Investigational Studies

	n	%	
Skin toxicity (CTC v3.0)			
Early dermatitis (during RT; $n = 1$	43)		
Grade 0	32	22	
Grade 1	53	37	
Grade 2	50	35	
Grade 3	8	6	
Skin toxicity at any time (during of	or following RT;	n = 135)	
≥Grade 2	66	51	
<grade 2<="" td=""><td>69</td><td>48</td><td></td></grade>	69	48	
Esophagus toxicity (CTC v3.0)			
Early esophagitis (during RT) (n =	: 136)		
Grade 0	86	64	
Grade 1	32	24	
Grade 2	15	11	
Grade 3	1	1	
Esophagus toxicity at any time (du	iring or after RT	; n = 136)	
≥Grade 2	16	12	
<grade 2<="" td=""><td>120</td><td>88</td><td></td></grade>	120	88	
RT suspended because of dermatitis	or esophagitis		
RT suspended during 5-10 days			
Yes	3	2	
No	88	60	
NA	55	38	
LVEF decrease after RT			
Decrease of LVEF (number of point	nts)		
Median	5		
Mean (SD)	6 (5)		
Range	0-24		
Decrease of LVEF			
Defined by CTC v3.0 scale ⁸	9	10	
(n = 92)			
Defined following HERA trial	6	5	
$criteria^b (n = 111)$			

Grade ≥2 dermatitis: 51%

Grade ≥2 esophagitis: 12%

Grade ≥2 LVEF decreases: 6-10%

Concomitant treatment is feasible in clinical practice

Patient selections for IMC irradiation are highly recommended

Belkacémi Y, et al. Ann Oncol. 2008;19:1110-1116

OVERVIEW

Background

Adjuvant chemotherapy

Trastuzumab and biologic drugs

Conclusions

Conclusions

•It remains controversial whether delaying radiotherapy in order to deliver chemotherapy compromises local disease control and survival.

•Any benefit in local control must be balanced against a potential increase in toxicity.

AIRO2013

Conclusions

- •Increased cardiotoxicity and skin reactions preclude the concomitant radiothera anthracycline-based chemotherapy.
- •Further investigations are warranted determine the safety of taxane-schedules used concomitantly radiotherapy (pneumotoxicity).
- •Concurrent administration of targeted treatment with radiotherapy is considered a safe and valid option.

Conclusions

- •A "tailored" approach on sequencing of chemotherapy and radiation is recommended.
- -histological and biological features
- -patient status
- -treatment modality
- →in order to **optimize** the delivery of adjuvant treatments.

Grazie per l'attenzione ...

