

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

Prime Esperienze con Versa HD – Velocità, Versatilità e Precisione

Frank Lohr, M.D.

With the Help of Lennart Jahnke, Jens Fleckenstein, Florian Stileler, Volker Steil

(I) Department overview

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinic statistics

Staff

- 22 MD's (attending + residents)
- 12 Full licensed physicist
- 6 PhD-students
- 17 Radiographers
- 35 Researchers

Treatment

2300 patients per year,

- ~1500 IMRT / VMAT Series per year,
- ~100 kV cone beam CT's per day ~50 MV EPIDS per day

Film- and paperless since 2006

Medizinische Fakultät Mannheim der Universität Heidelberg

(II) Evolution of Elekta Radiotherapy

Medizinische Fakultät Mannheim der Universität Heidelberg

MLCi2

Integrity 1.1 e.g.

Continuously Variable Dose rate (CVDR)

Interdigitation for MLCi2

VMAT QA prescriptions

Improvements regarding Service Diagnostics

IntelliMax (support for remote support)

*By courtesy, Elekta

Medizinische Fakultät Mannheim der Universität Heidelberg

What is Integrity? Advantages of Continuously Variable Dose rate (CVDR)?

Medizinische Fakultät Mannheim der Universität Heidelberg

One clinical hour at a Linac

Action	Patient	Time	Description	MU's	Fx Dose	Treatment Time	Total
finish treatment	Patient A	8:08					
finish IGRT	Patient B	8:20	2x MV Images (IView)	4.0 MU			
finish treatment	Patient B	8:29	6X StepNShoot 100CPs	401.4 MU	1.8 Gy	~9 min	
finish treatment	Patient C	8:38	6X StepNShoot 68CPs	637.7 MU	2.0 Gy	~7 min	~34 min
finish treatment	Patient D	8:46	6X StepNShoot 46CPs	531.3 MU	2.0 Gy	~7 min	
finish IGRT	Patient E	8:52	1x MV Images (IView)	2.0 MU			
finish treatment	Patient E	9:03	6X StepNShoot 150CPs	721.0 MU	2.0 Gy	~11 min	

Elekta Synergy Platform + Desktop 7 + MLCi 2

Elekta Synergy + Integrety 1.1 + MLCi 2

Action	Patient	Time	Description	MU's	Fx Dose	Treatment Time	Total
finish treatment	Patient A	11:22					
finish IGRT	Patient B	11:35	cone beam CT (XVI)				
finish treatment	Patient B	11:43	6X StepNShoot 82CPs	614.6 MU	1.8 Gy	~8 min	
finish IGRT	Patient C	11:51	cone beam CT (XVI)				
finish treatment	Patient C	11:56	6X VMAT 205CPs	670.5 MU	2.0 Gy	~5 min	~26 min
finish IGRT	Patient D	12:06	cone beam CT (XVI)				
finish treatment	Patient D	12:13	6X VMAT 181CPs	1357.0 MU	2.0 Gy	~7 min	
finish IGRT	Patient E	12:22	cone beam CT (XVI)				
finish treatment	Patient E	12:26	6X VMAT 191CPs	479.7 MU	1.8 Gy	~6 min	

LB4 07.09.	2010													
#	Patient	101	Time (beam on + imaging)	Crs	Txd- Field	Mode	MU	Wdg MU	Dose	Wdg- Appl	Comp- FDA*	Block- Oth	V&R	¢0
100	Patient A	AAA	12:47	1	ст	X CT	0.0		0 c6y				٧p	Out
101	Patient B	BBB	12:52	1	10ROT	6X VMAT 104C P	444.1	0.0	200 cGy				vf	Out
	Patient B	BBB	13:02	7	σ	X CT	0.0		0 c6y				٧p	Out
102	Patient C	CCC	13:06	7	4ROT1	6X VMAT 91 CP	848.1	0.0	200 cGy				vf	Out
	Patient C	CCC	13:13	1	σ	X CT	0.0		0 c6y				٧p	Out
103	Patient D	DDD	13:23	1	2ROT1	6X VMAT 192C P	662.9	0.0	200 cGy				vf	Out
	Patient D	DDD	13:39	1	σ	X CT	0.0		0 cGy				vp	Out
104	Patient E	EEE	13:47	1	2ROT1	6X VMAT 189C P	775.3	0.0	200 cGy				ovf	Out

27 min. total treatment time, including cone beam CT and imaging.

Figure 5. One hour routine treatment. Patient logistics vs. treatment time (IGRT + VMAT): 50% / 50%. Beam-on times between 2 and 7 minutes.

Medizinische Fakultät Mannheim der Universität Heidelberg

Limitations for treatment speed

Medizinische Fakultät Mannheim der Universität Heidelberg

The evolution of radiotherapy – the next generation

Agility

- 160 leaves x 5 mm width in ISO, 40x40 field
- Interdigitation
- Leaf speed up to 6.5 cm/ sec
- Leakage/ transmission < 0.5%
- Smoother and more precise modulation

MLC	Nr.of leafs	Leaf width isocenter	overtravel	Leaf speed	Leaf nominal height
Agility	160	0,5 cm	15 cm	0-3,5cm/sec	9 cm
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	*Combined with leaf	· · · · · · · · · · · · · · · · · · ·
			:	guide	
MLC2i	80	1,0 cm	12,5 cm	0-2,0 cm/sec.	8,2 cm
:	:	· · ·	:	: :	· · ·

Medizinische Fakultät Mannheim der Universität Heidelberg

MLC Rubicon-System

- MLC-reflectors replaced by ruby tips
- Ultraviolet light from an LED source produces infrared fluorescence when it falls on the ruby tips of the multileaf collimator leaves
- Infrared fluorescence detected by infrared camera

Medizinische Fakultät Mannheim der Universität Heidelberg

(III)Monaco 3.3 treatment planning

Medizinische Fakultät Mannheim der Universität Heidelberg

Monaco 3.3 treatment planning

- Cost function based biological and physical optimization
- TEMPLATES
- Two step optimization (optimal fluence then segmentation)
- Margin concepts to avoid help structures
- Virtual Head Model
- Monte Carlo dose engine
- Segmentation with sliding window that fits the Agility head

Agility and Monaco 3.3

- Small lesions
- Dedicated Micro MLC not needed anymore
- One solution for all our planning needs

Medizinische Fakultät Mannheim der Universität Heidelberg

Moving leaf bank and Monaco

Moving leaf bank in Agility and in Monaco ... full speed if all the leafs are moving in the same direction

Medizinische Fakultät Mannheim der Universität Heidelberg

Biased dose in planning

Optimization takes into account previously given doses...

Medizinische Fakultät Mannheim der Universität Heidelberg

Fleckenstein et al., submitted

Monaco dose calculation modules

Hounsfield Unit conversion: metallic implants

- contouring implants, which are in the PTV, improves the target DVH and enhances the optimization convergence probability
- relative electron density of titanium implants: 3.73

UNIVERSITÄTSMEDIZIN MANNHEIM

use clear and fill options for CT reconstruction artifacts

Monaco 3.3 at Mannheim University Hospital

About 80% of all treatments are intensity modulated techniques

Medizinische Fakultät Mannheim der Universität Heidelberg

Medizinische Fakultät Mannheim der Universität Heidelberg

One clinical hour at a Linac

Elekta Synergy + Integrity 1.1 + MLCi 2

Action	Patient	Time	Description	MU's	Fx Dose	Treatment Time	Total
finish treatment	Patient A	11:22					
finish IGRT	Patient B	11:35	cone beam CT (XVI)				
finish treatment	Patient B	11:43	6X StepNShoot 82CPs	614.6 MU	1.8 Gy	~8 min	
finish IGRT	Patient C	11:51	cone beam CT (XVI)				
finish treatment	Patient C	11:56	6X VMAT 205CPs	670.5 MU	2.0 Gy	~5 min	~26 min
finish IGRT	Patient D	12:06	cone beam CT (XVI)				
finish treatment	Patient D	12:13	6X VMAT 181CPs	1357.0 MU	2.0 Gy	~7 min	
finish IGRT	Patient E	12:22	cone beam CT (XVI)				
finish treatment	Patient E	12:26	6X VMAT 191CPs	479.7 MU	1.8 Gy	~6 min	

Versa HD + Integrity 3.1 + Agility

Action	Patient	Time	Description	MU's	Fx Dose	Treatment Time	Total
finish treatment	Patient A	10:15					
finish treatment	Patient B	10:22	10X VMAT 206CPs	424.8 MU	1.8 Gy	~4 min	
finish IGRT	Patient C	10:30	cone beam CT (XVI)				
finish IGRT	Patient C	10:32	2x MV Images (IView)	4.0 MU			
finish treatment	Patient C	10:37	10X VMAT 128CPs	491.2 MU	1.8 Gy	~5 min	
finish IGRT	Patient D	10:45	cone beam CT (XVI)				~28 min
finish treatment	Patient D	10:48	10X VMAT 189CPs	826.8 MU	2.0 Gy	~7 min	
finish IGRT	Patient E	10:55	cone beam CT (XVI)				
finish treatment	Patient E	11:00	10X DMLC 96CPs	670.2 MU	2.0 Gy	~5 min	
finish IGRT	Patient F	11:09	cone beam CT (XVI)				
finish treatment	Patient F	11:16	6X DMLC 165CPs	597.2 MU	2.0 Gy	~7 min	

Limitations for treatment speed

Gantry speed

• for safety reasons limited to 1 rpm

• max. 6.5 cm/sec with the Agility

Medizinische Fakultät Mannheim der Universität Heidelberg

Anal Cancer

Medizinische Fakultät Mannheim der Universität Heidelberg

Medizinische Fakultät Mannheim der Universität Heidelberg

Medizinische Fakultät Mannheim der Universität Heidelberg

Step-and-Shoot IMRT

695 MU/1.5 Gy 92 Segments 13 min UNIVERSITÄTSMEDIZIN MANNHEIM

Peritoneal PNET

Two arcs, Two isocenters, 2740 MU/1.5 Gy

First CT to last beam off: ~20 min (2 CTs, 2 Arcs)

Medizinische Fakultät Mannheim der Universität Heidelberg

Anal Cancer

Two arcs, Two isocenters, 1403 MU/1.8 Gy

First CT to last beam off: <20 min (2 CTs, 2 Arcs)

Medizinische Fakultät Mannheim der Universität Heidelberg

NPC

Treatment Sequence

before

Medizinische Fakultät Mannheim der Universität Heidelberg

Longitudinal VMAT TBI Jahnke et al., Radiother Oncol, 2014

Unterteilung eines kontinuierlichen Bestrahlungsbogens von 320° bis 60° mit 10 Kontrollpunkten (Feldgröße 10x40cm)

UNIVERSITÄTSMEDIZIN UNIVERSITÄTSMEDIZIN

Medizinische Fakultät Mannheim der Universität Heidelberg

0°

<u>Clinical experiences with</u> <u>FFF treatment delivery</u>

Jens Fleckenstein, Ph.D. University Medicine Mannheim, Germany

Medizinische Fakultät Mannheim der Universität Heidelberg

(IV) Overview

Medizinische Fakultät Mannheim der Universität Heidelberg

Treatment chain

- Philips Brillinace CT Big Bore 16 stripe
- Monaco 3.3 to use the full capability of the moving leaf banks
- Mosaiq 2.5 to deliver FFF
- Integrity 3.1 to deliver FFF beams
- Agility MLC to get high leaf speeds
- DMLC/ VMAT to be fast and conformal
- FFF to achieve high dose rates
- IGRT (XVI, Symmetry, Clarity) to position accurately
- Patient immobilization (ABC)
- A fast and reliable QA method

Medizinische Fakultät Mannheim der Universität Heidelberg

Current status Versa HD in Mannheim

- Nov. 2012: machine commissioning finished, validation report received
- Mar. 13th: first patient treated with FFF
- Jul. 22-26: matching second Versa HD
- Until Aug. 1st: 38 patients treated with FFF
- Hypo-fractionated ($D_{fx} \ge 5$ Gy) treatments performed:
 - Brain metastases,
 - Lung,
 - Liver,
 - Adrenal glands

Medizinische Fakultät Mannheim der Universität Heidelberg

Limitations for treatment delivery time

Gantry speed

for safety reasons limited to 1 rpm

Leaf/ Jaw speed

• max. 6.5 cm/s with Agility MLC

Dose rate Versa HD

- FF mode: ~ 6 Gy/min (600 MU/min)
- FFF mode: ~ 15 Gy/min (1500 MU/min) for 6 MV

~ 24 Gy/min (2400 MU/min) for 10 MV

(V) Versa HD FFF beam

Medizinische Fakultät Mannheim der Universität Heidelberg

Flattening filter free (FFF) treatment head

Filter setup Mannheim

	flat	FFF
photons - pot	ential in (M	IV)
6	\checkmark	\checkmark
10	\checkmark	\checkmark
18	\checkmark	Ø
electrons - ene	ergy in (Me	eV)
low: 4, 6, 8	\checkmark	\checkmark
mid: 10, 12, 15	\checkmark	\checkmark
high: 18, 20, 22	Ø	Ø

Medizinische Fakultät Mannheim der Universität Heidelberg

beam data requirements for Monaco 3.3, FFF, 6 MV

accurate profile/ head scatter measurements

- (3 × 3) cm² quadratic fields (A-B direction)
- VMAT with interdigitating leafs: smaller segments accurate measurements for equivalent field sizes FS< (3 × 3) cm²
- use diamond or diode detector for FS< 3 cm

Medizinische Fakultät Mannheim der Universität Heidelberg

Monaco Virtual Energy Fluence model - FFF 10 MV

Versa HD – LINAC matching – lateral profiles

				10 cm >	(10 cm			30 cm x 30 cm							40 cm x 40 cm						
		Mon	aco	Lina	ac 1	Lina	ac 2	Mor	naco	Lina	ac 1	Lina	ac 2	Mor	naco	Lina	ac 1	Lina	ac 2		
Measureme	nt point distance																				
0.2	G-T axis	98.0	97.7	99.1	99.3	99.4	99.2	89.9	90.4	95.2	95.1	95.2	95.3	85.3	86.1	92.3	92.1	92.4	92.6		
	A-B axis	97.4	98.4	99.2	99.1	99.2	99.2	90.7	90.3	95.1	94.7	95.3	95.3	85.8	85.9	92.2	91.7	91.9	92.1		
0.5	G-T axis	91.6	91.3	95.1	95.4	95.6	95.1	70.0	69.8	80.0	79.9	80.2	80.2	61.4	61.3	72.5	72.5	72.6	72.8		
	A-B axis	91.5	91.5	95.2	94.9	95.0	95.1	69.7	70.1	79.9	79.4	80.2	80.2	61.2	61.0	72.4	72.1	72.2	72.4		
0.8	G-T axis	81.2	80.9	87.3	87.7	88.0	87.1	54.0	53.2	64.8	64.8	64.8	64.9	44.6	44.8	56.2	56.1	56.1	56.3		
	A-B axis	81.6	81.3	87.2	86.9	86.8	87.2	53.5	53.1	64.8	64.5	64.9	64.9	44.9	44.9	56.2	55.9	55.8	56.2		

	measured mean values									
0	.2 G-T axis	97.9	99.2	99.3	90.2	95.1	95.3	85.7	92.2	92.5
	A-B axis	97.9	99.2	99.2	90.5	94.9	95.3	85.9	92.0	92.0
0	.5 G-T axis	91.5	95.3	95.3	69.9	79.9	80.2	61.4	72.5	72.7
	A-B axis	91.5	95.0	95.1	69.9	79.6	80.2	61.1	72.2	72.3
0	.8 G-T axis	81.1	87.5	87.5	53.6	64.8	64.9	44.7	56.1	56.2
	A-B axis	81.5	87.0	87.0	53.3	64.7	64.9	44.9	56.0	56.0

references from Elekta customer acceptance test (CAT)								
0.2	98.4	90	84.9					
0.5	91.4	67.9	59					
0.8	81.1	51.5	42.4					
tolerance (±%)	3	3	3					

	deviation from CAT in (%)									
0.2	G-T axis	-0.6	0.1	0.2	0.2	0.5	0.7	0.8	1.1	1.4
	A-B axis	-0.5	0.1	0.1	0.5	0.3	0.7	0.9	0.8	0.9
0.5	G-T axis	0.0	0.3	0.4	2.0	1.7	2.0	2.3	2.2	2.4
ļ	A-B axis	0.1	0.1	0.1	2.0	1.4	2.0	2.1	1.9	2.0
0.8	G-T axis	0.0	0.4	0.4	2.1	2.2	2.3	2.3	2.5	2.6
	A-B axis	0.3	-0.1	-0.1	1.8	2.1	2.3	2.5	2.4	2.4

Monaco TPS

- 0.5 0.5 - 0.5

-1.5

10

5

0

-2.5 -2

counts

more

10 MV

(VI) Patient collective

Medizinische Fakultät Mannheim der Universität Heidelberg

Patient collective

	ID	Modality	fx	dose in (Gy)	CPs/segs	MU	beams/rots	energy		ID	Modality	fx	dose in (Gy)	CPs/segs	MU	beams/rots	energy
	1	VMAT	1	16	180	5217	4	6	er l	25	DMLC	5	5	42	1554	7	10
		VMAT	1	16	176	7620	4	6	liš		Dillo		•				
	2	VMAT	1	16	112	4326	3	6	(0)								
	3	VMAT	1	22	32	3089	8	6	< is	26	DMLC	1	5	81	1402	9	10
	4	VMAT	1	16	66	2245	2	6	bel		VMAT		E	490	2007		10
	5	VMAT	1	22	66	3206	2	6			VINAI	4	5	182	2007	1	10
	6	VMAT	1	16	89	2439	2	6				_				_	
	7	VMAT	1	16	66	2353	2	6		27	DMLC	12	5	27	947	7	10
	9	VMAT	1	16	90	2094	2	6		20	DMLC		10	166	2002	4	10
	11	VMAT	2	20	69	1395	1	6		20	DIVILC	4	12	100	3803	1	10
	12	VMAT	1	16	54	1992	2	6		29	DMLC	5	12	32	2260	8	10
	13	VMAT	1	16	66	3971	2	6		30	DMLC	5	12	45	2336	9	10
g		VMAT	1	16	65	4390	2	6		24	DMLC	40	-	00		7	10
lea	14	VMAT	1	22	54	3101	2	6		31	DMLC	12	5	23	820	1	10
2	15	VMAT	3	5	89	974	2	6			DMLC	12	5	28	983	7	10
	16	VMAT	1	22	71	4022	2	6	BC	32	DMLC	5	12	28	2365	7	10
		VMAT	1	22	144	6058	4	6	A		544.6	_	40			_	
	17	DMLC	1	22	70	8850	10	6	bu	33	DMLC	5	12	27	2300	1	10
	18	DMLC	1	16	172	4201	8	6	2	34	DMLC	5	12	32	1873	8	10
	19	DMLC	1	22	32	3667	8	6			DMLC	5	12	32	1861	8	10
	20	DMLC	5	5	29	757	9	6					_				
	21	DMLC	1	16	36	2236	10	6		35	VMAT	12	5	45	979	4	10
	22	DMLC	1	16	66	3833	11	6			VMAT	12	5	44	972	4	10
		DMLC	1	22	72	6700	12	6		36	VMAT	5	10	66	1294	1	10
		DMLC	1	13	54	2326	11	6									
	23	VMAT	1	20	228	2206	3	6		37	VMAT	12	5	191	1830	1	10
	24	VMAT	1	20	87	2017	3	6		38	VMAT	5	12	67	1847	1	10

Medizinische Fakultät Mannheim der Universität Heidelberg

One clinical hour at a Linac

	Action	Patient	Time	Description	MUs	Fx Dose	Treatment Time	Total
	finished treatment	Patient A	10:15			•		
Т	finished treatment	Patient B	10:22	10X VMAT 206CPs	424.8 MU	1.8 Gy	~4 min	
<u> </u>	finished IGRT	Patient C	10:30	cone beam CT (XVI)				
gilit 3.1	finished IGRT	Patient C	10:32	2× MV Images (IView)	4.0 MU			
₹ _{>}	finished treatment	Patient C	10:37	10X VMAT 128 CPs	491.2 MU	1.8 Gy	~5 min	
y + gri	finished IGRT	Patient D	10:45	cone beam CT (XVI)				~28 min
arg	finished treatment	Patient D	10:48	10X VMAT 189 CPs	826.8 MU	2.0 Gy	~7 min	
yne Ir	finished IGRT	Patient E	10:55	cone beam CT (XVI)		•		
Ś.	finished treatment	Patient E	11:00	10X DMLC 96 CPs	670.2 MU	2.0 Gy	~5 min	
	finished IGRT	Patient F	11:09	cone beam CT (XVI)				
	finished treatment	Patient F	11:16	6X DMLC 165 CPs	597.2 MU	2.0 Gy	~7 min	
	Action	Patient	Time	Description	MUs	Fx Dose	Treatment Time	Total
ю. 1	finished treatment	Patient G	12:18					
ţ	finished IGRT	Patient H	12:25	cone beam CT (XVI)				
gri	finished treatment	Patient H	12:33	10X FFF DMLC 40 CPs AB	C 2,260.1 MU	12.0 Gy	~8 min	
nte	finished IGRT	Patient I	12:42	cone beam CT (XVI)				
+	finished treatment	Patient I	12:51	6X FFF DMLC 37 CPs	757.6 MU	5.0 Gy	~9 min	~20 min
Q	finished IGRT	Patient J	13:04	cone beam CT (XVI)				~29 11111
а Т	finished treatment	Patient J	13:07	10X VMAT 219 CPs	644.6 ML	J 2.0 Gy	~3 min	
S S	finished IGRT	Patient K	13:17	cone beam CT (XVI)				
¥	finished IGRT	Patient K	13:19	2x MV Images (IView)	4.0 ML	J		
	finished treatment	Patient K	13:28	6X DMLC 149 CPs	584.4 ML	J 1.8 Gy	~9 min	

Medizinische Fakultät Mannheim der Universität Heidelberg

(VI.a) Brain treatments

Medizinische Fakultät Mannheim der Universität Heidelberg

2 brain metastases, D= (1×16) Gy treatment planning

Stieler et al., Radiother Oncol, 2013

Structure	Cost Function	Enabled	Status	Manual	Weight	Reference Dose (cGy)	Multicriterial	Isoconstraint	Isoeffect	Relative Impact
PTV.1 +	Target EUD		On		1.00			1600.0	0.0	
	Quadratic Overdose	V	On		0.09	1600.0		80.0	0.0	
	Quadratic Underdose	V	On	(F)	0.01	1600.0		80.0	0.0	
PTV.2 +	Target EUD	V	On		1.00			1600.0	0.0	
	Quadratic Overdose	×	On	111	0.08	1600.0	100	80.0	0.0	
	Quadratic Underdose	V	On		0.01	1600.0		80.0	0.0	
Sehnerv li 🔸	Serial	V	On		0.01			300.0	0.0	
	Quadratic Overdose	V	On	(E)	0.01	300.0	(FT)	50.0	0.0	
Sehnerv re +	Serial	V	On		0.01			300.0	0.0	
	Quadratic Overdose	×	On	111	0.01	300.0	100	50.0	0.0	
Chiasma +	Serial	V	On		0.02		V	160.5	0.0	
	Quadratic Overdose	V	On	m	0.01	300.0		50.0	0.0	
Hirnstamm 👻	Quadratic Overdose	V	On	E	0.01	400.0	(F)	80.0	0.0	
	Parallel	V	On		0.01	400.0		22.00	0.00	
Linse li 🔹	Parallel	V	On	111	0.01	200.0	100	20.00	0.00	
Linse re 🔷 👻	Parallel	V	On		0.01	200.0		20.00	0.00	
Auge li 🗸	Parallel	V	On	[77]	0.01	300.0	100	60.00	0.00	
Auge re 👻	Parallel	V	On	E	0.01	300.0	(F)	60.00	0.00	
RM +	Serial	V	On		0.01			400.0	0.0	
Patient -	Quadratic Overdose	V	On	171	0.01	600.0	100	28.0	0.0	
		-		<dick td="" to<=""><td>add a new stru</td><td>icture></td><td></td><td></td><td></td><td></td></dick>	add a new stru	icture>				
nization mode:										
onstrained (No	rmal Tissue Priority)						Print	OK	Can	cel Apply

1	Beam S	preadsh	eet														-/	
	魚	Gen	eral	Geo	metry	Setup	Beams											
	AAA	Beam	Descriptio	n	Field ID	Visible	Ø	Delivery	Ø	Machine ID	Ø	Isocenter	Location	X (cm)	Y (cm)	Z (cm)		•
	*	1	G12A			1	Step & S	Shoot IMRT 🚽	Agility	_6MV_FFF -	Plan	Isocenter	•	2.75	-46.90	-2.00		1
	m	2	G10A			1	Step & S	Shoot IMRT 🚽	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00		
		3	G11A			1	Step & S	Shoot IMRT 🚽	Agility	_6MV_FFF +	Plan	Isocenter	-	2.75	-46.90	-2.00		
		4	G13A			1	Step & S	Shoot IMRT 🚽	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00	-	-
	(m)	5	G14A			1	Step & S	Shoot IMRT 🚽	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00		
		6	G15A			V	Step & S	Shoot IMRT 🗸	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00		
		7	G16A			1	Step & S	Shoot IMRT 🗸	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00		
		8	G17A			1	Step & S	Shoot IMRT 🗸	Agility	_6MV_FFF +	Plan	Isocenter	•	2.75	-46.90	-2.00		
								coliok	to add	a new heams							, , , , , , , , , , , , , , , , , , , ,	۳.

Medizinische Fakultät Mannheim der Universität Heidelberg

2 brain metastases, D= (1×16) Gy documentation

Plan Information

Studyset ID: CT3	# of Slices:	163	Pixel Size:	0.07	Scan Orientation:	HFS
Treatment Position:	HEAD IN					

Setup Information

Scan F	Reference Coordin	ates (cm):	No So	an Reference	Point P	nas been	selected				
Beam	Description	Machine ID	Energy	Gantry	Coll.	Couch	Isocen	ter		# of	MU/fx
#							x	Y	z	Segs	
1	G12A	Agility_6MV_FFF	6 (FFF)	181.0	0.0	0.0	2.75	-46.90	-2.00	11	296.79
2	G10A	Agility_6MV_FFF	6 (FFF)	220.0	0.0	0.0	2.75	-46.90	-2.00	19	522.46
3	G11A	Agility_6MV_FFF	6 (FFF)	288.0	0.0	0.0	2.75	-46.90	-2.00	21	621.86
4	G13A	Agility_6MV_FFF	6 (FFF)	72.0	0.0	0.0	2.75	-46.90	-2.00	28	676.61
5	G14A	Agility_6MV_FFF	6 (FFF)	144.0	0.0	0.0	2.75	-46.90	-2.00	23	491.76
6	G15A	Agility_6MV_FFF	6 (FFF)	30.0	0.0	90.0	2.75	-46.90	-2.00	22	461.56
7	G16A	Agility_6MV_FFF	6 (FFF)	70.0	0.0	90.0	2.75	-46.90	-2.00	24	688.53
8	G17A	Agility_6MV_FFF	6 (FFF)	150.0	0.0	90.0	2.75	-46.90	-2.00	24	441.39
9	VER3A	Agility_6MV_Int	6	0.0	0.0	0.0	2.75	-46.90	-2.00	0	0.00
10	Ver4A	Agility_6MV_Int	6	270.0	0.0	0.0	2.75	-46.90	-2.00	0	0.00
									Total:	172	4200.96

Normalization

Prescription (cGy): 1600.0 # of Fractions: 1 (1,600.00 cGy/fx) 100.00 % of 1600.0 cGy to cover 50.00 % of PTV.1

Dose Calculation

Grid Spacing (cm):	0.20
# of Calculation Points:	5906752
Assigned CTtoED File:	DICOM3.BrillianceBigC
Algorithm: Calculate Dose to:	Monte Carlo Photon Medium
MC Std Dev per Plan:	1.00
Max Dose in Plan (cGy):	1674.7
Max Dose Location (cm):	X = 1.95 Y = -46.90 Z = 1.40
Delivery Mode:	Step & Shoot IMRT

Whole procedure including CBCT and verification:

T= 19 min

treatment time for 8 beams, 172 CP, 4.2k MU, 2 table angles:

T=7 min

Medizinische Fakultät Mannheim der Universität Heidelberg

2 brain metastases, D= (1×16) Gy documentation

🗇 Diagnoses and Interventions - ID1: 34306865				
Radiation Medical Surgery General Admin				
	Start Status			
C→[1] Dx: links parietal Secondary malignant neoplasm of brain and cerebral meninges C→Radiation Oncology Course: 2 C→Rad Rx: GH - 3D Plan - Xrays Dose: 3.000 cGy @ 300 cGy x 10 C→Ratrament Fields	21.02.2013 01.03.2013 A 5.3.2013 DB			
→ Teatment Fields	06.03.2013 A 6.3.2013 JB 06.03.2013 A 6.3.2013 JB A 12.3.2013 DB AE 5.3.2013 KS			
G10 - 181* Boost 1x16 Gy K - 6 X StepNShoot 182 Control Points G11 - 30*Boost 1x16 Gy - 6 X StepNShoot 128 Control Points VER3 - 0* Boost 1x16 Gy - 6 X MLC VER4 - 270* Boost 1x16 Gy - 6 X MLC G124 - 181* Boost 1x16 GyFFF - 6 X FFF StepNShoot 204 Control Points G134 - 30*1x16GyFFF Tisch90 - 6 X FFF StepNShoot 140 Control Points - C - CT - CT - CT - Dx: IIIA: 1 - Right Upper lobe - bronchus or lung	H 13.03.2013 AH 12.3.2013 DB 13.03.2013 AH 12.3.2013 DB 13.03.2013 AH 13.3.2013 DB 13.03.2013 AH 13.3.2013 DB 13.03.2013 AH 13.3.2013 DB AH 12.3.2013 DB 31.07.2012			
□ → Adenokarzinom o.n.A. □ → Radiation Oncology Course: 1	23.08.2012			
→ BRad RX: Lunge - IMRT Plan - Xrays Dose: 0 CGy @ 0 CGy X 0 B BRad RX: Med./Lunge re - IMRT Plan - Xrays Dose: 6.600 CGy @ 200 CGy X 33	Rx Site: FFF Pläne Dose	e: ?????/D cGy Fractions: ??/D	Approved:	ΟK
Site Setup ⊡- @ Treatment Fields	Eield: MB3 Lunge Dose	e: 1.204 cGy Field Tx: [0]	Approved: 02.01.2013	Cance <u>l</u>
G1 - Lunge - 6 X DMLC 170 Control Points VER1 - 0° Gantry - 6 X MLC	Machine: LB2 CGy/ML	J: 0,581 Tolerance: treat	 Last Treated: 	<< Field Setup
VER2 - 270° Gantry - 6 X MLC -CT1 - Lunge - CT -D 1-2),PDF CT2,02 IMRT.PDF	Beam Jype: VMAT ▼ Modality: Vrays ▼ Energy: BFFF ▼ Monitor Units: 6 6FFF Wedge MU: 10 Imme: 10 FFF Doserate: 0 ▼ Arc Direction: CW MU/Deg: 0,00 Start Angle: 180,0 - Accessories/Stats Wedge: ▼ Compensator:	Gantry/Collimator Gantry Angle: 180,0 ℃ Collimator Angle: 0,0 Fjeld Size X: 40,0 Fjeld Size X: 40,0 Jaw X1: -20,0 Jaw X2: 20,0 Jaw Y2: 4,5 ▲ Jaw Y2: 4,5 ▲ Y2: 4,5 ▲ Jaw Y2: 4,	Tol 1,0 1,0 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0	○ Note Note x2 id 0pen 0,000 0,000 0,000
39 13.03.2013 11:22 LE2 - 11:22 CT CT LE2 - 11:23 VER4 1 2.0 MU LE2 - 11:24 VER4 1 2.0 MU LE2 - 11:24 VER3 1 2.0 MU LB2 - 11:34 G12A 1 2609.6 MU 800 cGy LB2 - 11:41 (G13A 1 1591.5 MU 800 cGy LB2	AZ A A * AZ A A * AZ A A * AZ A	Angle: 0,0 1.600 cGy 1.600 cGy pstal: 0,0 800 cGy 800 cGy		3ID: 0,0

Medizinische Fakultät Mannheim der Universität Heidelberg

2 brain metastases, D= (1×16) Gy quality assurance

Medizinische Fakultät Mannheim der Universität Heidelberg

Intensity modulated radiosurgery of brain metastases with flattening filter-free beams

							Monitor units (MU)						
	Treatmen	t technique		Treatment t	ime (min)	Single M	etastases	Mu Meta	iltiple istases				
RT		Agility FF		9:49±	0:59	3501	±523	463	6±372				
W		Versa HD		5:06±	0:23	3364	±406	453	4±642				
AT		Agility FF		8:32±	2:21	3333	±867	428	4±249				
M>		Versa HD		4:18±	1:07	3275	±950	4635±583					
Treatm	ent technique	Conformity index CI		Homogene	ity index HI	GI	Low	GI _{High}					
		S.M.	M.M.	S.M.	M.M.	S.M.	M.M.	S.M.	M.M.				
Т	Agility FF	0.67± 0.02	0.66± 0.03	1.08± 0.01	1.08± 0.02	2.65± 0.22	3.39± 0.41	3.23± 0.63	3.27± 0.24				
M	Versa HD	0.66± 0.04	0.64± 0.03	1.08± 0.01	1.10± 0.02	2.61± 0.18	3.36± 0.67	3.16± 0.58	3.03± 0.67				
АT	Agility FF	0.75± 0.04	0.75± 0.04 0.74± 0.02		1.06± 0.01	2.79± 0.17	2.95± 0.23	3.23± 0.43	3.45± 0.41				
ν M N	Versa HD	0.72± 0.05	0.70± 0.04	1.07± 0.02	1.06± 0.01	2.81± 0.16	3.03± 0.31	3.29± 0.35 3.66± 0.5					

Stieler et al., Radiother Oncol, 2013

Courtesy of F. Stieler

Medizinische Fakultät Mannheim der Universität Heidelberg

2 mets, D= (1×22) Gy, T= 18 min (beam on) 12 beams, 4 table angles, 6.7k MU

Stieler et al., Radiother Oncol, 2013

Beam	Description	Machine ID	Energy	Gantry	Coll.	Couch	Isocer	ter		#of	MU/fx
#							x	Y	z	Segs	
1	G21	Agility_6MV_FFF	6 (FFF)	260.0	0.0	0.0	-3.00	18.50	-4.00	6	595.84
2	G22	Agility_6MV_FFF	6 (FFF)	288.0	0.0	0.0	-3.00	18.50	-4.00	6	591.78
3	G23	Agility_6MV_FFF	6 (FFF)	0.0	0.0	0.0	-3.00	18.50	-4.00	6	603.19
4	G24	Agility_6MV_FFF	6 (FFF)	40.0	0.0	0.0	-3.00	18.50	-4.00	6	593.15
5	G25	Agility_6MV_FFF	6 (FFF)	72.0	0.0	0.0	-3.00	18.50	-4.00	6	588.75
6	G26	Agility_6MV_FFF	6 (FFF)	130.0	0.0	0.0	-3.00	18.50	-4.00	6	556.97
7	G27	Agility_6MV_FFF	6 (FFF)	30.0	120.0	90.0	-3.00	18.50	-4.00	6	573.16
8	G28	Agility_6MV_FFF	6 (FFF)	70.0	120.0	90.0	-3.00	18.50	-4.00	6	554.75
9	G29	Agility_6MV_FFF	6 (FFF)	35.0	150.0	45.0	-3.00	18.50	-4.00	6	542.85
10	G30	Agility_6MV_FFF	6 (FFF)	65.0	150.0	45.0	-3.00	18.50	-4.00	6	582.11
11	G31	Agility_6MV_FFF	6 (FFF)	295.0	120.0	315.0	-3.00	18.50	-4.00	6	344.00
12	G32	Agility_6MV_FFF	6 (FFF)	325.0	120.0	315.0	-3.00	18.50	-4.00	6	573.58
13	VER5	Agility_6MV_Int	6	0.0	0.0	0.0	-3.00	18.50	-4.00	0	0.00
14	VER6	Agility_6MV_Int	6	270.0	0.0	0.0	-3.00	18.50	-4.00	0	0.00
									Total:	72	6700.14

Normalization

Prescription (cGy): 2200.0 # of Fractions: 1 (2,200.00 cGy/fx)

inische Fakultät Mannheim der Universität Heidelberg

2 mets, D= (1×16) Gy, T= 12 min (beam on) 12 beams, 4 table angles, 3.6k MU

Stieler et al., Radiother Oncol, 2013

2	G5	Agility_6MV_FFF	6 (FFF)	260.0	0.0	0.0	0.00	14.00	-3.00	6	L
3	G1	Agility_6MV_FFF	6 (FFF)	288.0	0.0	0.0	0.00	14.00	-3.00	6	
4	G8	Agility 6MV FFF	6 (FFF)	40.0	0.0	0.0	0.00	14.00	-3.00	6	
5	G3	Agility 6MV FFF	6 (FFF)	72.0	0.0	0.0	0.00	14.00	-3.00	6	
6	G4	Agility_6MV_FFF	6 (FFF)	130.0	0.0	0.0	0.00	14.00	-3.00	6	
7	G6	Agility_6MV_FFF	6 (FFF)	30.0	0.0	90.0	0.00	14.00	-3.00	6	
8	G7	Agility_6MV_FFF	6 (FFF)	70.0	0.0	90.0	0.00	14.00	-3.00	6	
9	G9	Agility_6MV_FFF	6 (FFF)	35.0	0.0	45.0	0.00	14.00	-3.00	6	
10	G10	Agility_6MV_FFF	6 (FFF)	65.0	0.0	45.0	0.00	14.00	-3.00	6	
11	G12	Agility_6MV_FFF	6 (FFF)	295.0	0.0	315.0	0.00	14.00	-3.00	6	
13	VER1	Agility_6MV_Int	6	0.0	0.0	0.0	0.00	14.00	-3.00	0	
14	VER2	Agility 6MV Int	6	270.0	0.0	0.0	0.00	14.00	-3.00	0	
									Total:	66	
			1	Normalizati	ion						

Medizinische Fakultät Mannheim der Universität Heidelberg

128.1

373.1 463.0 383.6 374.0 367.3

0.00

(VI.b) Lung treatments

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinical Setup: 1. Flow-Based Breath Hold Triggering

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinical Setup: 2. Surface-based Surveillance

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

Live image

Breath hold surveillance

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinical Setup: 3. Direct Liver Tracking

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinical Setup: Flow-Based Breath Hold Triggering

Medizinische Fakultät Mannheim der Universität Heidelberg

"Intensity Modulated, Volume-Image Guided SABR (Stereotactic Ablative Radiotherapy) can be applied in a 15-min treatment slot"

Boda-Heggemann et al., Radiother Oncol, 2013

- Flattening-filter-free FFF 10 MV Versa HD
- intensity modulated Monaco dMLC plan
- Active breathing coordinator ABC
- image-guidance XVI, EPID

Transversal and coronal PET-CT images of the patient

Universitätsklinikum Mannheim

Medizinische Fakultät Mannheim

der Universität Heidelberg

SABR (Stereotactic Ablative Radiotherapy)

Treatment planning

General	Geometry	Setup	Beams												
Beam Descri	ntion Field ID	Visible	// De	aliyan	8 Machine I	D	/A leocente	r Location	X (cm)	Y (cm)	7 (cm)			1	
1 G1		1000	HMI C	- Aci	HIGGINING T	F - C	enter of GTV	Ebodilon	10.06	-2.10	-1.85				
2 G8		V	MILC	• Agi	lity 10MV FF	F + 0	enter of GTV		10.06	-2.10	-1.85				
3 G5		V	dMLC	- Ag	lity 10MV FF	F + C	Center of GTV		10.06	-2.10	-1.85				
4 G2		V	dMLC	+ Agi	lity_10MV_FF	F + C	Center of GTV		10.06	-2.10	-1.85				
5 G7		V	dMLC	- Agi	lity_10MV_FF	F + C	Center of GTV	-	10.06	-2.10	-1.85				
6 G3		V	dMLC	- Agi	lity_10MV_FF	F 🗸 C	Center of GTV	•	10.06	-2.10	-1.85				
7 G4		V	dMLC	- Ag	lity_10MV_FF	F + C	Center of GTV	•	10.06	-2.10	-1.85				
8 G6		1	dMLC	- Ag	lity_10MV_FF	F - 0	Center of GTV	•	10.06	-2.10	-1.85				
				Calc	k to add a nev	w beam>									
Group Only Visit	ble Beams										Pri	nt (Close		
						_							×		
rescription		- 6		24	$-\nu$	11							<u>×</u>		
Structure	S Cost Function		Enabled	Status	Manual	Weight	Reference Do	ise (cGv)	Multicriterial	Isoconstraint	Isoeffect Re	ative Impact			
PTV Lunge I +	Target EUD			On		1.00				6000.0	0.0				
	Quadratic Overdose		V	On		1632.23		6000.0		80.0	0.0				
	Quadratic Underdose		V	On		100.00		6000.0	-	80.0	0.0				
RM -	Quadratic Overdose		V	On		0.01		1000.0		50.0	0.0				
Herz -	· Parallel		X	On		0.01		2000.0		25.00	0.00				
Lunge re	Parallel		v.	On		0.01		1000.0		30.00	0.00				
Lunge ges. 🗸															
Patient -	Quadratic Overdose	_	V	On		0.01		3600.0		30.0	0.0				
						od a new stru	Joure>								
Optimization mode:								_							
Constrained (No	ormal Tissue Priority)								Print	OK	Cancel	Appl	·		
Pareto (Target)	Volume Priority)														
			_	_	_	_	_								
		S	Sequenc	ing Param	eters: dML	С		×	100						
		ſ				-									
			Maria	# . f. C	al Dainte Da	Deen									
			Max	# of Cont	roi Points Pe	r Beam:		5	80						
			-				15	0.00	-						{} }
			Targ	et Dose Ra	ite (MU/min):		15	0.00							
			MG-	C	Carlable (and)			0.50	60-						
			MIN.	Segment V	viaith (cm):			0.00	(%)						
			Eluca	ace Smooth	ina:		Modiu	-	e i						
			m uer	Surger Surger	Efficience :		Mediu	•	\$ 40-						
			V N	ax. Sweep	Endency										
			V A	llow Move	Only Segmer	nts			20						
					OK	Can	icel								
									0	1000	2000	3000	4000	5000	5000
				IN								Dose (e	Gy)		
	MANNHE	IM													

Medizinische Fakultät Mannheim der Universität Heidelberg

SABR (Stereotactic Ablative Radiotherapy) documentation

First fraction setup time incl. ABC/ CBCT and EPID: T= 30 min treatment time: T= 8 min (8 beams, 2.3k MU)

Plan Information

Studyset ID: CT1

Pixel Size: 0.12 Scan Orientation: HFS

Treatment Position: HEAD IN

Setup Information

Scan I	Reference Coordin	ates (cm):	No So									
Beam	Description	Machine ID	Energy	Gantry	Coll.	Couch	Isocen	ter		# of	MU/fx	
#							х	Y	z	Segs		
1	G1	Agility_10MV_FFF	10 (FFF)	190.0	0.0	0.0	10.06	-2.10	-1.85	4	325.68	
2	G8	Agility_10MV_FFF	10 (FFF)	220.0	0.0	0.0	10.06	-2.10	-1.85	4	286.03	
3	G5	Agility_10MV_FFF	10 (FFF)	295.0	0.0	0.0	10.06	-2.10	-1.85	4	253.22	
4	G2	Agility_10MV_FFF	10 (FFF)	335.0	0.0	0.0	10.06	-2.10	-1.85	4	236.79	
5	G7	Agility_10MV_FFF	10 (FFF)	0.0	0.0	0.0	10.06	-2.10	-1.85	4	280.43	
6	G3	Agility_10MV_FFF	10 (FFF)	30.0	0.0	0.0	10.06	-2.10	-1.85	4	237.69	
7	G4	Agility_10MV_FFF	10 (FFF)	80.0	0.0	0.0	10.06	-2.10	-1.85	4	341.93	
8	G6	Agility_10MV_FFF	10 (FFF)	140.0	0.0	0.0	10.06	-2.10	-1.85	4	298.01	
9	VER1	Agility_6MV_Int	6	0.0	0.0	0.0	10.06	-2.10	-1.85	0	0.00	
10	VER2	Agility_6MV_Int	6	90.0	0.0	0.0	10.06	-2.10	-1.85	0	0.00	

E- CRAd Rx: Lungenmetastase FFF - IMRT Plan - Xrays Dose: 6.000 cGy @ 1.200 cGy A 26.3.2013 SM Site Setup AE 22.3.2013 KS E- Treatment Fields -G1 - 190° Lunge ABC FFF - 10 X FFF DMLC 5 Control 26.03.2013 A 26.3.2013 SM G8 - 220° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM G5 - 295° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM G2 - 335° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points G7 - 0° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM 26.03.2013 A 26.3.2013 SM -G3 - 30° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM -G4 - 80° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM G6 - 140° Lunge ABC FFF - 10 X FFF DMLC 5 Control Points 26.03.2013 A 26.3.2013 SM -VER1 - 0° Lunge ABC FFF - 6 X MLC 26.03.2013 A 26.3.2013 SM -VER2 - 90° Lunge ABC FFF - 6 X MLC 26.03.2013 A 26.3.2013 SM -CT1 - FFF - CT A 25.3.2013 KH EPID - 0° - 10 X FF 26.03.2013 A 26.3.2013 SM

Normalization

Prescription (cGy): 6000.0 # of Fractions: 5 (1,200.00 cGy/fx)

of Slices:

88

⊡- <mark>62</mark>	26.03.2013 1	1:46	11Fld			1PI			LB2			1	1.200 cGy	1.200 cGy
-	1	1:46	CT1			CT			LB2	+	Sv/Sv			
-	1	1:53	VER2	1			2,0 MU		LB2	٨	Sv			
-	1	1:54	VER1	2			4,0 MU		LB2	^ +	Sv			
-	1:	2:01	EPID	2			10,1 MU		LB2	^ +	Sv/Sv			
-	1:	2:05	G7	1			280,4 MU	150 cGy	LB2	۸	Sv		150 cGy	
-	1:	2:06	G3	1			237,7 MU	150 cGy	LB2	٨	Sv		150 cGy	
-	1:	2:07	G4	1			341,9 MU	150 cGy	LB2	٨	Sv		150 cGy	
-	1:	2:08	G6	1			298,0 MU	150 cGy	LB2	۸	Sv		150 cGy	
-	1:	2:10	G1	1			325,7 MU	150 cGy	LB2	٨	Sv		150 cGy	
-	1:	2:11	G8	1			286,0 MU	150 cGy	LB2	٨	Sv		150 cGy	
-	1:	2:12	G5	1			253,3 MU	150 cGy	LB2	۸	Sv		150 cGy	
	1:	2:13	G2	1			236,8 MU	150 cGy	LB2	۸	Sv		150 cGy	

Medizinische Fakultät Mannheim der Universität Heidelberg

SABR (Stereotactic Ablative Radiotherapy) Image guidance

Iview (EPID) MV-verification image

Transversal, sagittal and coronal CBCT (XVI) images

Medizinische Fakultät Mannheim der Universität Heidelberg

SABR (Stereotactic Ablative Radiotherapy) Quality assurance

Medizinische Fakultät Mannheim der Universität Heidelberg

2nd lung hypofractionated FFF treatment

D= (5×12) Gy total treatment time including CBCT: T= 18 min treatment time (beam on): T= 6 min 2.2k MU in 9 dMLC beams

Setup Information

Scan	can Reference Coordinates (cm): No Scan Reference Point has been selected																								
Beam	Description	Machine ID	Energy	Gantry	Coll.	Couch	Isocen	ter		# of	MU/fx	Ē-	4 15.04.201	3 12:21	9Flds			1PI			LB2			4 10	1.200 cGy
#							Х	X Y Z Segs				_	12:21	CT1			CT			LB2		AZ			
1	G1	Agility_10MV_FFF	10 (FFF)	190.0	0.0	0.0	-7.70	6.60	0.51	5	256.81		_	12.22	G1	4	10		256 9 MU	133 cGv	LB2		A7		133 cGv
2	G8	Agility_10MV_FFF	10 (FFF)	220.0	0.0	0.0	-7.70	6.60	0.51	5	252.64			10.00	010	i	10		260,0 MU	122 - 0-4	1.02		12		122
3	G9	Agility 10MV FFF	10 (FFF)	250.0	0.0	0.0	-7.70	6.60	0.51	5	320.61		_	IZ.ZZ	GIU	4	10		ZOZ, T IVIU	135 CGY	LDZ		AZ		135 CGY
4	G5	Agility_10MV_FFF	10 (FFF)	295.0	0.0	0.0	-7.70	6.60	0.51	5	171.90		-	12:23	G9	4	10		320,6 MU	133 cGy	LB2		AZ		133 cGy
5	G2	Agility_10MV_FFF	10 (FFF)	335.0	0.0	0.0	-7.70	6.60	0.51	5	344.46		_	12:24	G5	4	10		171,9 MU	133 cGy	LB2		AZ		133 cGy
6	G7	Agility_10MV_FFF	10 (FFF)	0.0	0.0	0.0	-7.70	6.60	0.51	5	231.78		_	12.25	G2	4	10		344.5 MU	133 cGv	LB2		A7		133 cGv
7	G3	Agility_10MV_FFF	10 (FFF)	30.0	0.0	0.0	-7.70	6.60	0.51	5	342.59			10.05	07		10		001,0 MU	122 - Cu	LDD		12		122 - Cu
8	G8	Agility 10MV FFF	10 (FFF)	80.0	0.0	0.0	-7.70	6.60	0.51	5	191.79			12.20	67	4	10		231,9 100	133 CGY	LDZ		AZ		133 CGY
9	G6	Agility_10MV_FFF	10 (FFF)	140.0	0.0	0.0	-7.70	6.60	0.51	5	222.98		-	12:26	G3	4	10		342,7 MU	133 cGy	LB2		AZ		133 cGy
10	VER1	Agility_10MV_FFF	10 (FFF)	0.0	0.0	0.0	-7.70	6.60	0.51	0	0.00		_	12:27	G8	4	10		191.8 MU	133 cGy	LB2		AZ		133 cGy
11	VER2	Agility_10MV_FFF	10 (FFF)	90.0	0.0	0.0	-7.70	6.60	0.51	0	0.00		_	12.28	G6	4	10		223 1 MU	136 cGv	LB2		A7		136 cGv
								г	otal:	45	2335.57					<u> </u>			220,1110						
Normalization																									

Normalization

Prescription (cGy): 6000.0 # of Fractions: 5 (1,200.00 cGy/fx)

Clinical Results Image Guided BH-Lung SABR

Medizinische Fakultät Mannheim der Universität Heidelberg

(VI.c) Treatment of adrenal glands

Medizinische Fakultät Mannheim der Universität Heidelberg

Right adrenal gland 3×60°partial VMAT arcs, D= (4×5) Gy

Sum plan adrenal glands D= (4×5) Gy, T= 3 min

Medizinische Fakultät Mannheim der Universität Heidelberg

(VI.d) Liver treatment

Medizinische Fakultät Mannheim der Universität Heidelberg

7 fields dMLC, 10 MV T= 6 min, D= (10×5) Gy

UMM UNIVERSITÄTSMEDIZIN MANNHEIM

Medizinische Fakultät Mannheim der Universität Heidelberg

Clinical Results Liver

Boda-Heggemann et al., Rad Onc, 2012

Medizinische Fakultät Mannheim der Universität Heidelberg

(VII) Comparison of MLCi2 – Agility - Versa HD treatment times

Medizinische Fakultät Mannheim der Universität Heidelberg

Prostate moderately complex, D= (30×2) Gy, 1 VMAT arc

Medizinische Fakultät Mannheim der Universität Heidelberg

Prostate moderately complex, D= (30×2) Gy, 1 VMAT arc

PROSTATE	MLCi2 Monaco 3.3	Agility Monaco 3.3	Versa HD Monaco 3.3
Homogenity index	1.09	1.09	1.09
OAR Rectum, mean dose	35.8Gy	35.6	35.96 Gy
OAR Bladder, mean dose	42.3 Gy	41.7	40.95 Gy
beam-on time per fraction	171 s	152 sec	156 s
number of MU's delivered	789	762	915

Medizinische Fakultät Mannheim der Universität Heidelberg

Lung moderately complex, D= (5 ×12) Gy, 1 VMAT arc

Medizinische Fakultät Mannheim der Universität Heidelberg

Lung

moderately complex, D= (5 ×12) Gy, 1 VMAT arc

LUNG	MLCi2 Monaco 3.3	Agility Monaco 3.3	Versa HD Monaco 3.3
Homogeneity Index	1.09	1.09	1.09
OAR Lung left, mean dose	8.25 Gy	8.13 Gy	8.35 Gy
OAR Lung right, mean dose	1.80 Gy	2.2 Gy	2.15 Gy
OAR Heart, Mean dose	0.18 Gy	0.17 Gy	0.17 Gy
beam-on time per fraction	230 s	245 s	130 s
number of MU's delivered	2014	1997	2281

treatment time t

Medizinische Fakultät Mannheim der Universität Heidelberg

Head & Neck complex segmentation, D= (30 ×1.8) Gy, 2 VMAT arcs

Medizinische Fakultät Mannheim der Universität Heidelberg

Head & Neck highly complex, D= (30 ×1.8) Gy, 2 VMAT arcs

Head and neck	MLCi2 Monaco 3.3	Agility Monaco 3.3	Versa HD Monaco 3.3
Homogeneity Index	1.12	1.14	1.13
OAR Parotis, mean dose	29.79 Gy	28.86 Gy	30.91 Gy
OAR Spinal Cord, max dose	44.33 Gy	42.40 Gy	44.62 Gy
OAR Lips, Mean dose	27.99 Gy	28.01 Gy	30.82 Gy
OAR Brain stem, mean dose	28.32 Gy	26.94 Gy	29.46 Gy
beam-on time per fraction	293 s	182 s	169 s
number of MU's delivered	635	633	1123

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

treatment time t

Liver moderately complex, D= (5×12) Gy, 1 VMAT arc

Medizinische Fakultät Mannheim der Universität Heidelberg

Liver

moderately complex, D= (5 ×12) Gy, 1 VMAT arc

LIVER	MLCi2 Monaco 3.3	Agility Monaco 3.3	Versa HD Monaco 3.3
Homogeneity index	1.07	1.06	1.06
OAR Liver, mean dose	10.57 Gy	10.46 Gy	10.44 Gy
OAR Kidney, max dose	8.63 Gy	8.15 Gy	8.13 Gy
OAR Spinal Cord, max dose	7.82 Gy	7.91 Gy	8.20 Gy
beam-on time per fraction	345 s	331 s	132 s
number of MU's delivered	2494	2710	2733

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

treatment time t

Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts

INRT_{FF} plans

INRT, from

INRT_{PER} plane

INRT_{ere} from

VMAT, plans

VMAT_{FF} from

VMAT PR

VMAT FOR FORM

Lechner et al., submitted

Courtesy AKH Vienna

700y(Rectum)/

V_VTU)/NSS-V

2

/(ALG)^{%36*}A

²² Perofid Glandi / Gy

(a)

HN1

HRT_{re} plan

INRT_{cc} from

MRT_{eer} plans

MRT., Ron

WAT_{re} plans

VMAT ... From

VMAT_{FFF} plan

VWAT HON

Dose Rate effects in Photon and Particle treatments - Are high dose rates problematic?

Medizinische Fakultät Mannheim der Universität Heidelberg

Dose Rate? Pulse Rate??? Dose per Pulse????

Figure 1. Schematic illustrating the different dose-per-pulse and pulse repetition frequencies of the x-ray fields used in this study.

King et al., PMB, 2013

Medizinische Fakultät Mannheim der Universität Heidelberg

Negative Studies

Michaels, Rad Res, 1978 (OER, field emitting device) Ling, IJROBP, 1985 (OER) (cell lines, 0,25-90 cGy/min) Steel et al., 1990 "There was little evidence of a dose-rate effect above 2 cGy/min but significant sparing was seen at lower dose rates"

Zackrisson, Acta Oncol, 1991 Soerensen, R&O, 2011 Verbakel, Acta Oncol, 2013 King, PMB, 2013

(cell lines, HDR e-, 24000Gy/min) (cell lines, diff. DR/pulse) (cell lines, moving strip) (cell lines, mesh buildup)

Reviews bei Ling, R&O, 2010 Wilson, Br J Radiol, 2012 (Oxygen depletion)

Universitätsklinikum Mannheim

der Universität Heidelberg

Positive Studies

Lohse, R&O, 2011

Fig. 4. Surviving fraction of T98G-glioblastoma cells at different dose rates. For 24 Gy/min, the *T*-LQ-model can fit the experimental data with $\alpha = 0.03 \text{ Gy}^{-1}$, $\beta = 0.04 \text{ Gy}^{-2}$ and $\gamma = 0.556 \text{ min}^{-1}$; for 4 Gy/min, γ has to be adapted to 0.361 min $^{-1}$ and for *R* = 0.2 Gy/min, a good fit can only be achieved by adapting the kinetic constant to $\gamma = 0.0313 \text{ min}^{-1}$.

Medizinische Fakultät Mannheim der Universität Heidelberg

Low dose rates

-> Loss of effect

Intermediate dose rates (covering the spectrum of what is currently possible with FFF Linacs (overall and per pulse) ->No effect

Ultra-high Dose rates (not relevant for photons, possibly for laser pulsed particles) -> Oxygen Depletion

Medizinische Fakultät Mannheim der Universität Heidelberg

Radiation biology of laser induced protons and heavy ions

PD Dr. Thomas Schmid Department Radiotherapy and Radiooncology

Preconference – 37 Years of Radiation Research

March 07, 2013

Pulsed character of laser-accelerated protons

"conventional" proton therapy

2 Gy in 100ms (=10⁻¹ s) per cell / tissue voxel laser-based proton therapy

2 Gy in 1ns (=10⁻⁹ s) per cell / tissue voxel

factor 10⁸ Is this difference in dose-rate of biological relevance?

Factor 10⁸ corresponds to an application of a 3 year event in only 1 second

Medizinische Fakultät Mannheim der Universität Heidelberg

γ-H2AX-foci in HeLa cells / repair of DNA DSBs

20 MeV protons (tandem accelerator) 1 Gy (single dose)

	continuous	pulsed
	(1 Gy in 100 ms)	(1 Gy in 1 ns)
Foci per cell	26.54 ± 2.54	23.29 ± 2.04
RBE	1.13 ± 0.21	0.96 ± 0.18

Medizinische Fakultät Mannheim der Universität Heidelberg

Take home messages - Versa HD

- Better modulation in shorter treatment times
 - higher conformity/ homogeneity 160 MLC leaves
 - higher leaf speed
 - higher dose rates can be achieved with FFF
- Where do we see this clinically
 - Agility speed improvements can be seen for many treatment sites and fractionation schemes
 - The advantage of higher dose rates from FFF can mainly be seen for moderately complex plans with fraction doses D> 5 Gy
- Quality assurance
 - An extensive measuring/ validation of base data and commissioning phase is necessary
 - individual pre-treatment plan verification recommended

Grazie per l'attenzione

Medizinische Fakultät Mannheim der Universität Heidelberg

