La Radioterapia palliativa con tecniche speciali della malattia metastatica

Trattamento non chirurgico delle oligometastasi

Polmone: Radioterapia stereotassica

Gianpiero Catalano

UO Radioterapia Oncologica

IRCCS MultiMedica, Sesto S. Giovanni (Mi)

Istituto Clinico MultiMedica, Castellanza (Va)

...the relevant question is not whether a benefit exists from local therapy for oligometastases, but which patients are likely to derive such a benefit...

Milano MT, IJROBP 2012

...the Benchmark

5206 casi chirurgici

2yOS: 70%

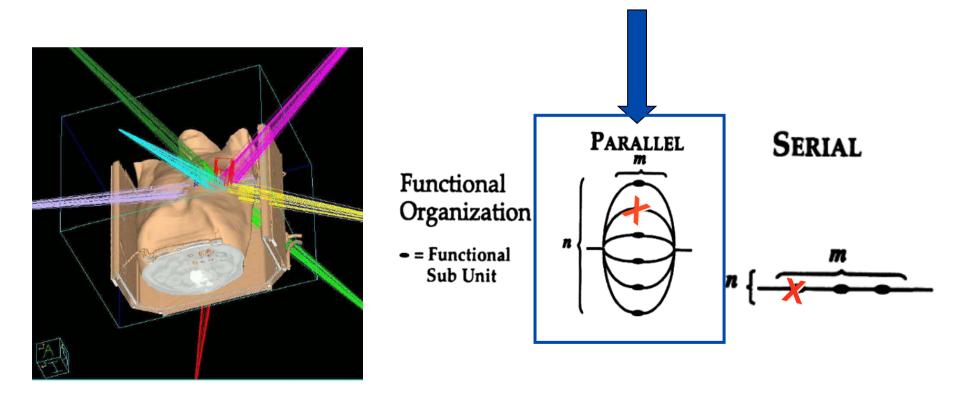
5yOS: 36%

15yOS: 26%

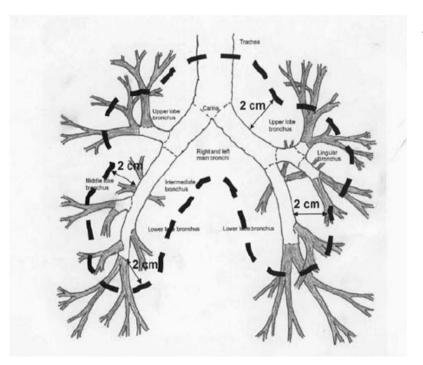
International Registry of Lung Metastases

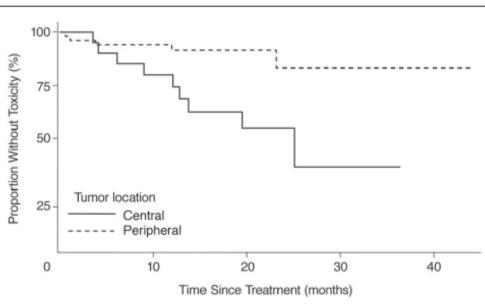
Controllo locale

COMMENTS AND CONTROVERSIES


Tossicità

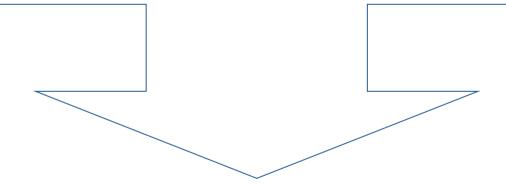
Extractanial Oligometastases: A Subset of Metastases


Curable With Stereotactic Radiotherany Extracrantal Oligonetastases: A Subset of
Curable With Stereotactic Radiotherapy JOURNAL OF CLIMICAL ONCOLOGY


Irradiazione <u>selettiva</u> di lesioni individuate attraverso principi di localizzazione stereotassici e trattate con schemi <u>ipofrazionati</u>

L'elevato gradiente di dose e la possibilità di ricorrere a schemi lpofrazionati, consente di trattare la neoplasia con dosi biologicamente "ablative", esasperando il risparmio dei tessuti sani

- Anche se spesso pretrattati con chemioterapia, i pazienti metastatici hanno generalmente una migliore funzionalità respiratoria rispetto ai primitivi
- "A LITTLE TO A LOT" è peggio per il polmone
- La sede della irradiazione impatta sul rischio di tossicità


Mancanza di studi randomizzati

Pochi studi con metastasi solo polmonari

Disomogeneità di dosi e frazionamenti

Outcome complessivo difficile da analizzare (competing risk)

Valutazione della risposta secondo criteri "ad hoc" (o comunque non necessariamente convenzionali)

E' molto difficile fornire risposte definitive!!

JTO 2010

Stereotactic Radiotherapy for Pulmonary Oligometastases A Systematic Review

Shankar Siva, MBBS, Michael MacManus, MD, MRCP, FRCR, FRANZCR, and David Ball, MD, MBBS, FRANZCR

Study Group

F/U Period Median (Range)

Outcomes

BED at Isocenter

BED at Margin

Toxicity

							Lax, Blomgren	Median 8.2 mo (3.5–25)	94% crude control. Crude o/s 46%, mean survival 11.3 mo, estimated 2-yr LC = 83%	Not reported	Median 183 Gy	Median 112.5 Gy
TABLE 2	. Lengths of Follo	ow-Up, Outcomes, To	oxicities Dose, Organ	Constraints, Tox	cicities, and BED	1	Uematsu	Median 11 mo (3-31)	97% LC at 11 mo (data pooled with NSCLC cohort). Estimated 2-yr LC = 93.6%	Not reported	Range, 144–188 Gy	Not reported
Group	F/U Period (mo) Median (Range)	Outcomes	Single Fraction Dose	Constraints for	Toxicity	BED at	Nagata	Median 19 mo (pooled with NSCLC)	67% crude local control	Pooled with NSCLC: only mild grade 1. No grade 3 or 4	105.6 Gy	Not reported
Nakagawa	Median 10 (2-82)	95% crude LC, median survival 9.4 mo	Median 20 Gy (range, 15–25 Gy)	Not specified	No grade 3+ or above	Not reported	Onimaru	Median 18 mo (2–44)	48% 2-yr o/s, 69.6% 3-yr pooled LC for 48 Gy (n = 39), 100% 3-yr pooled LC	One grade 5 esophageal necrosis in one patient, one other grade 2 chest	48 Gy/8 = 76.8 Gy early 60 Gy/8 = 105	Not reported
Нага		AZIONE S	30 Gy (n = 7)	•	18% grade 2	Not reported		17 1110	FRAZIONI (Gy	
Wulf	140 pts Median 14 (2–37)	2-yr LC 48%	•			138 Gv	Song	Median 14 mo	90% crude local control.	29% grade 1-2 toxicities (4	Not reported	Not reported
W CHI	Wedian 14 (2-37)	100% crude LC and 33% actuarial 2-	9 - 22 m	lest in organs	above	136 Gy		mean F/U 22.6 mo	FU: 8-	444 mesillar		
2 '	yLC: 78.	6%(48-93	l%);	S: 50.3	%(33- 7	73%)	2yLC		%(67-96%)	; 2 yOS: 53	3.7%(33	3-89%)
E.	Madian 22 ma	estimated 2-yr o/s 32%, es Pneu LC 56.3 Pneu	mo G3:	5-9%	with NSCLC)	120 Gu	_	Median 10 mo for 48/4 group	100% Pat 48 Gy/4 all grou P neum C	G3: <3%	Not reported	Mean for 48 Gy/4 fx = 92.7–118.8 Gy
Hof	(6.8–83 mo) 2-yr o Median 14 (1.5–82) 65.1% 2		Mediastinal organs and lungs	pneumonitis ans 5% grade 3 Variable pneumonitis	120 419	Aoki 1	Median 17.7 mo (9.4– 39.5)	95% crude LC (pooled with NSCLC), o/s at 2 yr 89.5%, estimated 2-yr LC = 93%	Nil grade 3 or 4 toxicities	86.4 Gy	Not reported	
		LĆ, 63.1% 3-yr LĆ	other doses (n = 23) all prescribed to isocenter		•		Milano, Okunieff	Median 18.7 mo (3.7– 60.9)	3-yr actuarial LC 91.0 ± 13.2%, crude LC = 94%, estimated 2-yr LC = 92%, 2-yr o/s 50%	3/49 (6%) grade 2, 1/49 (2%) grade 3 pericardial effusion	Not reported	Minimum 56 Gy at PTV margin
							Norihisa	Median 27 mo (10–80)	2-yr LC 90%. 2-yr o/s 84%	1/34 grade 3 toxicity, 6% (2/34) musculoskeletal, grade 2 pneumonitis in 12% (4/34)	132 Gy	Not reported
							Brown	Median 18 mo (2-41)	77% crude o/s. Estimated 2-yr o/s = 72.5%, LC not reported, 84% response rate	One patient with grade 4 pneumonitis	6–110 Gy using α/β ratio of 20	Variable
							Salazar	Median 44 mo (2–84)	86% crude LC, median o/s = 19 mo, 3-yr o/s 29%	Pooled toxicity with NSCLC: 19% overall, 7% grade 2, no grade 3 or 4	119.6 Gy	Not reported
							Rusthoven	Median 15.4	2-yr LC 96%, 2-yr o/s 39%	10.5% grade 2, 7.9% grade	Not reported	180 Gy

Neoplasia primitiva = PROGNOSI

SBRT of lung cancer

Stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer and other primary cancers in comparison with primary lung cancer

Atsuya Takeda a,b, Etsuo Kunieda c,*, Toshio Ohashi a,d, Yousuke Aoki a, Naoyoshi Koike a, Toshiaki Takeda b

R&O 2011

44 M1, 188 primitivi polmonari

Characteristic			e analysis		Multivari	Multivariate analysis		
		HR	95% CI	p Value	HR	95% CI	p Value	
Age		0.98	0.93-1.03	0.35	1.03	0.97-1.10	0.31	
Gender				0.41			0.47	
Male	(n = 165)	1			1			
Female	(n = 67)	0.63	0.21-1.90		0.66	0.21-2.04		
Tumor diameter		1.16	0.71-1.90	0.56	1.39	0.83-2.32	0.21	
Disease				< 0.001			< 0.05	
Metastases from CRC	(n = 21)	1			1			
Metastases from other than CRC	(n = 23)	0.13	0.02-1.08	0.06	0.11	0.01-0.99	< 0.05	
Pathological diagnosed lung ca.	(n = 115)	0.13	0.04-0.37	< 0.001	0.09	0.02-0.41	< 0.005	
Clinical diagnosed lung ca.	(n = 73)	0.17	0.05-0.55	< 0.005	0.14	0.02-0.66	< 0.05	
Histology				0.62			-	
Adeno carcinoma	(n = 105)	1						
Squamous cell ca.	(n = 45)	1.00	0.32-3.13	0.99				
Other or unknown	(n = 82)	0.58	0.18-1.82	0.58				
Location				0.35			0.58	
Peripheral	(n = 199)	1			1			
Central	(n = 33)	1.79	0.52-6.17		1.48	0.37-6.01		
Adjuvant chemotherapy				< 0.001			0.33	
Done	(n = 220)	1			1			
Not done	(n = 12)	5.81	2.09-16.15		2.00	0.50-8.09		

^a Department of Radiology, Ofuna Chuo Hospital, Japan; ^b Department of Radiology, Tokyo Metropolitan Hiroo General Hospital, Japan; ^c Department of Radiation Oncology, Tokai University School of Medicine, Japan; ^d Department of Radiology, Keio University School of Medicine, Japan

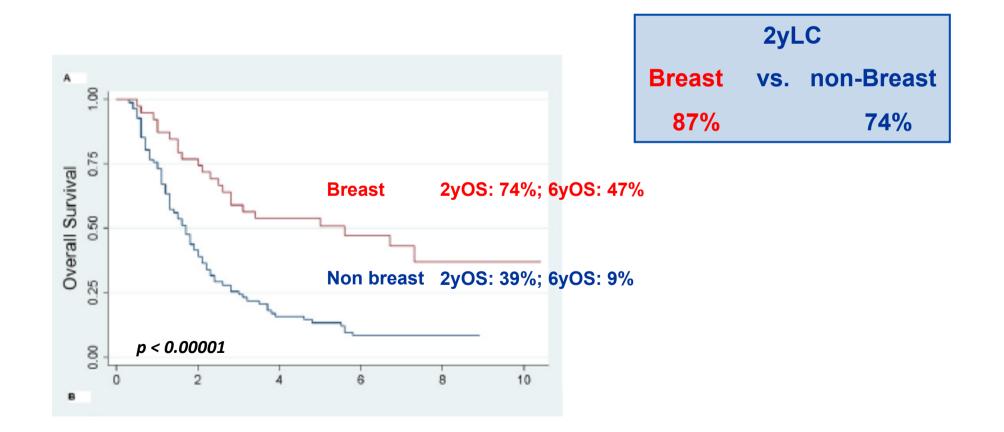
Oligometastases Treated With Stereotactic Body Radiotherapy: Long-Term Follow-Up of Prospective Study

Michael T. Milano, M.D., Ph.D.,* Alan W. Katz, M.D., M.P.H.,* Hong Zhang, Ph.D., M.D.,* and Paul Okunieff, M.D.*,†

IJROBP 2012

293 lesioni, 121 pts, 1-5 lesioni metastatiche in <u>1-3 organi</u>

		Breast	Non-breast	
Primary cancer		2100.00		
Breast	39 (32)	39 (100)	0	NA
Colorectal	31 (26)	0	31 (38)	
Lung, head/neck, esophagus	23 (19) [‡]	0	23 (28)	
Other	28 (23)§	0	28 (34)	
Primary histologic type				NA
Adenocarcinoma	89 (74)	39 (100)	50 (61)	
Squamous cell carcinoma	7 (6)	0	7 (9)	
Sarcoma	7 (6) [¶]	0	7 (9)	
Other	18 (15)¶	0	18 (22)	
Initial sites involved with oligometastatic disease				
Lung	50 (41)	11 (28)	39 (48)	0.044
Thoracic lymph nodes	24 (20)	9 (23)	15 (18)	0.54
Liver	54 (45)	13 (33)	41 (50)	0.085
Pelvis/abdomen	6 (5)	2 (5)	4 (5)	0.95
Brain	5 (4)	1 (3)	4 (5)	0.55
Bone	15 (12)	11 (28)	4 (5)	$0.0003*,^{\dagger}$
Initial oligometastatic lesions (n)				$0.16^{*,\dagger}$
1	37 (31)	15 (38)	22 (27)	0.20
2	32 (26)	12 (31)	20 (24)	
3	28 (23)	6 (15)	22 (27)	
4-5	24 (20)	6 (15)	18 (22)	

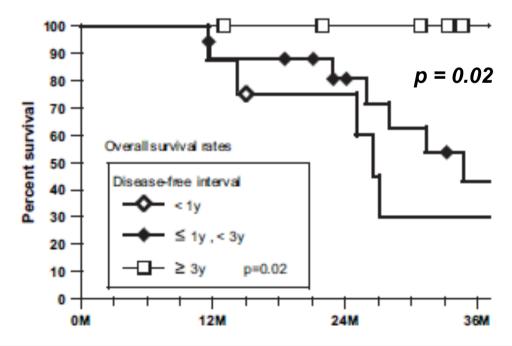

^{*}Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; and [†]Department of Radiation Oncology, University of Florida, Gainesville, FL

Oligometastases Treated With Stereotactic Body Radiotherapy: Long-Term Follow-Up of Prospective Study

Michael T. Milano, M.D., Ph.D.,* Alan W. Katz, M.D., M.P.H.,* Hong Zhang, Ph.D., M.D.,* and Paul Okunieff, M.D.*,†

*Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; and †Department of Radiation Oncology, University of Florida, Gainesville, FL

IJROBP 2012


STEREOTACTIC BODY RADIOTHERAPY FOR OLIGOMETASTATIC LUNG TUMORS

IJROBP 2008

Yoshiki Norihisa, M.D.,* Yasushi Nagata, M.D., Ph.D.,* Kenji Takayama, M.D.,* Yukinori Matsuo, M.D., Ph.D.,* Takashi Sakamoto, M.D.,[†] Masato Sakamoto, M.D.,[‡] Takashi Mizowaki, M.D., Ph.D.,* Shinsuke Yano, B.S.,* and Masahiro Hiraoka, M.D., Ph.D.*

34 pazienti, 1-2 metastasi polmonari (< 4 cm) Primitivo in controllo, Non altre sedi di M+

- 48 Gy in 4 fx (BED 105.6)
- 60 Gy in 5 fx (BED 132)

Disease-free interval correla significativamente con OS

^{*}Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan;

†Department of Radiation Oncology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; and †Department of Radiology, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan

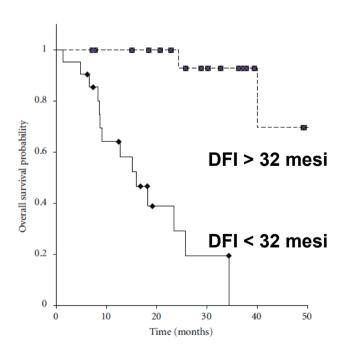
Clinical Study

Clinical Outcomes of Stereotactic Body Radiotherapy for Patients with Lung Tumors in the State of Oligo-Recurrence

Tetsuya Inoue, Norio Katoh, Rikiya Onimaru, and Hiroki Shirato

Department of Radiology, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638,

22 pazienti, 1-2 lesioni (< 5 cm) 48 Gy in 4 fx (BED 105.6)

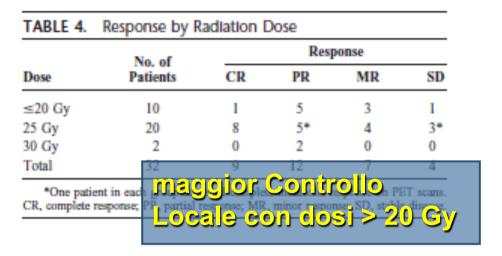

0.8 - 236 months 0.6 - 236 months $0.2 - 20 \quad 40 \quad 60 \quad 80 \quad 100 \quad 120 \quad 140$ Months

Clinical Study

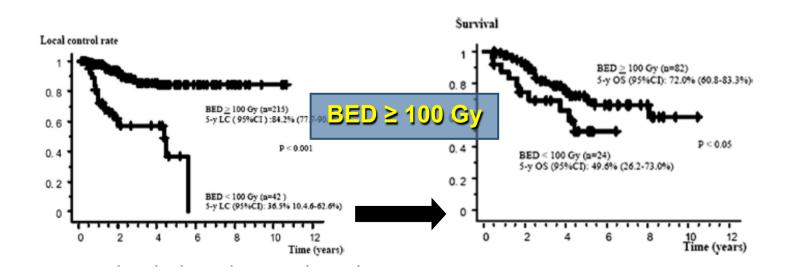
Stereotactic Body Radiotherapy for Metastatic Lung Cancer as Oligo-Recurrence: An Analysis of 42 Cases

Wataru Takahashi,¹ Hideomi Yamashita,¹ Yuzuru Niibe,² Kenshiro Shiraishi,¹ Kazushige Hayakawa,² and Keiichi Nakagawa¹

42 pazienti, 1-2 lesioni (< 4 cm) 48 Gy in 4 fx (BED 105.6)



¹ Department of Radiology, University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan


² Department of Radiology and Radiation Oncology, Kitasato University, Kanagawa 252-0374, Japan

Correlazione dose-risposta in termini di Controllo tumorale

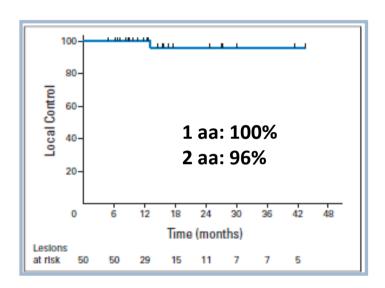
Cyberknife 15-30 Gy 32 pz. (22 NSCLC/12 M1 singole)

Le, JTO 2006

Onishi, JTO 2007

• Il controllo locale non è necessariamente associato alla sopravvivenza

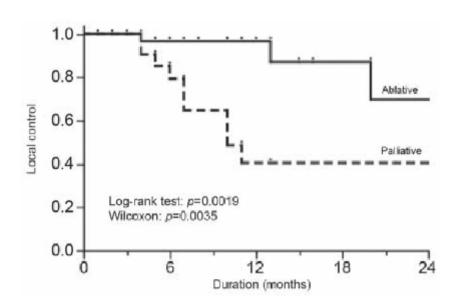

Multi-Institutional Phase I/II Trial of Stereotactic Body Radiation Therapy for Lung Metastases JCO 2009


Kyle E. Rusthoven, Brian D. Kavanagh, Stuart H. Burri, Changhu Chen, Higinia Cardenes, Mark A. Chidel, Thomas J. Pugh, Madeleine Kane, Laurie E. Gaspar, and Tracey E. Schefter

38 pz. (68 lesioni, max diam. 7 cm)

Fase I: Dose-escalation $48 \rightarrow 60 \text{ Gy}$

Fase II: 60 Gy in 3 frazioni



Thirty-one (82%) of 38 patients had one or more of the following unfavorable of the following unfavora

Ablative or Palliative Stereotactic Body Radiotherapy with Helical Tomotherapy for Primary or Metastatic Lung Tumor

MICHELA MARCENARO¹, STEFANO VAGGE¹, LILIANA BELGIOIA¹, DARIO AGNESE¹, GIORGIO LAMANNA¹, ELISA MANTERO¹, MARCO GUSINU², STEFANIA GARELLI², FRANCESCA CAVAGNETTO², STEFANO AGOSTINELLI² and RENZO CORVÒ¹

Divisions of ¹Radiation Oncology and ²Medical Physics, IRCCS San Martino – IST National Cancer Research Institute and University, Genoa, Italy

2-y LC 69% (ablative) vs. 40% (palliative) p=0.002

2-y OS 58% (ablative) vs. 49% (palliative) p=0.57

Figure 2. Local control for ablative stereotactic body radiotherapy (SBRT) and palliative SBRT (40.4% and 69.6%, 24 months respectively).

Sembra che la dose richiesta per ottenere un adeguato controllo delle localizzazioni metastatiche debba essere superiore a quella richiesta per controllare le neoplasie primitive

"... higher local failure rate in lung metastases group than in primary lung group..."

Nagata, IJROBP 2002

Preceder	erved Badia	tion-Rel <mark>ated</mark>	Toxicities and 1	Freatment Recei	ived		
Chemiote	PIV	Location	Time to Toxicity (mo)	Prior Thoracic RT	Before or After RT Chemotherapy	Toxicity	Grade
25	20.3	Peripheral	3	None	None	Pleural effusion	2
25	20.2	Peripheral	6	None	None	Pneumonitis	3
25	74.3	Central	6	None	Carboplatin, paclitaxel,	Tracheoesophageal fistula	5
25	69.6	Central	3	None	FOLFOX, FOLFIRI, bevacizumab	Pneumonitis	2
25	61.9	Central	6	None	Megestrol acetate	Pneumonitis, atrial fibrillation	2
25	86.3	Central	5	Yes	Cisplatin, 5-flourouracil	Pneumonitis, pleural effusion (vs.	5
						recurrence)	
25	36.6	Central	5	Yes	Gemcitabine, gefitinib,	PE and recalled	5
30	50.6	Peripheral	5	None	trastuzumab None	pneumonitis Pneumonitis	2

Le, JTO 2006

Is the dose still important for lung metastases?

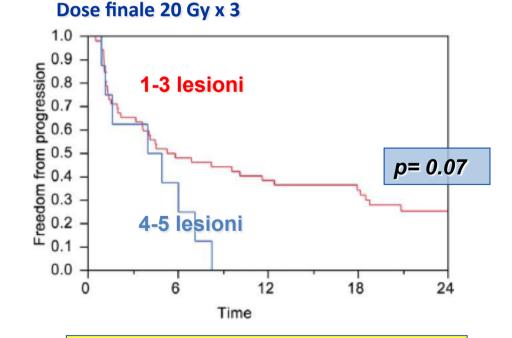
- Is LC the primary end-point?
- Does LC of lung metastases have an impact on survival?
- Should we lower the dose to treat more lesions (if so, how many)?

Ci sono altri fattori prognostici utili a selezionare i pazienti?

Stereotactic Body Radiotherapy for Multisite Extracranial Oligometastases

Cancer 2011

Final Report of a Dose Escalation Trial in Patients With 1 to 5 Sites of Metastatic Disease


Joseph K. Salama, MD¹; Michael D. Hasselle, MD²; Steven J. Chmura, MD, PhD^{2,3}; Renuka Malik, MD²; Neil Mehta, MD²; Kamil M. Yenice, MD²; Victoria M. Villaflor, MD^{3,4}; Walter M. Stadler, MD^{3,4}; Philip C. Hoffman, MD^{3,4}; Ezra E. W. Cohen, MD^{3,4}; Philip P. Connell, MD^{2,3}; Daniel J. Haraf, MD^{2,3}; Everett E. Vokes, MD^{2,3,4}; Samuel Hellman, MD²; and Ralph R. Weichselbaum, MD^{2,3,5}

61 paz→ 113 lesioni

Dose di partenza: 8 Gy x 3

Escalation di 6 Gy (2 Gy/fr)

Metastatic lesions treated per protocol	113	
Lung	41	36.3
Lymph nodes	22	19.4
Liver	22	19.4
Osseous	15	13.3
Adrenal	9	8.0
Soft tissue	3	2.7
Pancreas	1	0.9
Mean metastatic sites per patients	2	(1-5)
1 lesion on protocol	33	55
2 lesions on protocol	11	18
≥3 lesions on protocol	16	27

2yOS: 60% vs. 22%

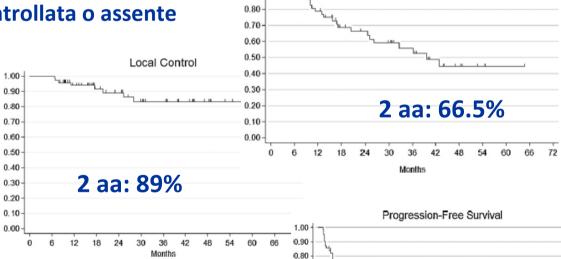
Stereotactic body radiation therapy for lung metastases

Umberto Ricardi^a, Andrea Riccardo Filippi^{a,*}, Alessia Guarneri^a, Riccardo Ragona^b, Cristina Mantovani^a, Francesca Giglioli^b, Angela Botticella^a, Patrizia Ciammella^c, Cristina Iftode^a, Lucio Buffoni^d, Enrico Ruffini^e, Giorgio Vittorio Scagliotti^f

Lung Cancer 2012

Overall Survival

2 aa: 32.4%


Months

61 pazienti con 1-3 metastasi (77 lesioni) Max diametro 5 cm Malattia extra toracica controllata o assente FEV1> 40%

45 Gy/3 fx (22 pts) 26 Gy/1 fx (51 pts) 36 Gy/3 fx (4 pts)

Prescrizione all'isodose dell'80%

FU mediano: 20.4 mesi (3-77.4)

0.70 0.60 0.50

0.30

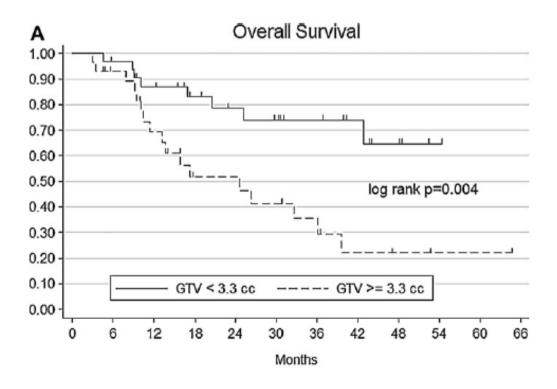
0.00

12

0.90

Radiation Oncology Department, University Hospital S. Giovanni Battista di Torino, Via Genova 3, 10126, Torino, Italy

b Medical Physics, University Hospital S. Giovanni Battista di Torino, Via Genova 3, 10126 Torino, Italy


Radiation Oncology Department, Arcispedale S.M. Nuova Hospital, Viale Risorgimento 80, 42123 Reggio Emilia, Italy

⁴ Medical Oncology Department, University Hospital S. Giovanni Battista di Torino, Via Genova 3, 10126 Torino, Italy

^{*}Thoracic Surgery Department, University Hospital S. Giovanni Battista di Torino, Via Genova 3, 10126 Torino, Italy

Thoracic Oncology Department, University Hospital S. Luigi, Regione Gorz ole 10, 10043 Orbassano, Italy

Factors	OS		CSS	CSS		LC		PFS	
	HR	p	HR	р	HR	p	HR	p	
Age (years)	1,02	0,385	1,04	0,144	0,92	0,112	1,01	0,557	
Gender	0.62	0,340	0.40	0.107	0.56	0,557	1.12	0,772	
Position	1.24	0.584	1.02	0.963	0.60	0.587	0.76	0,381	
Tumor volume	1,10	0.012	1.17	0.001	0.65	0.645	1.11	0.012	
Disease-free interval	0.99	0,824	0.99	0,385	1,01	0,139	1.00	0,320	
n Lung mets	0.79	0.609	0.77	0.617	0.06	0,927	1.65	0.068	
Prior chemotherapy	0.56	0,335	0.70	0.583	0.01	0.999	1.17	0.109	
Biologically effective dose	0,99	0,805	0,98	0,204	1,00	0,778	0,99	0,749	
	GTV sig	gnificativo			GTV no	n significa	itivo		

Ricardi, 2012

Conclusioni (1)

- Il tumore <u>primitivo</u> incide nella selezione complessiva del paziente fornendo una valutazione prognostica generale
- Il <u>Disease-free interval</u> (e i trattamenti pregressi) sembra il parametro prognosticamente più importante nella selezione del paziente
- Il <u>volume</u> della lesione di per sé non rappresenta un limite assoluto, provvedendo una dose "adeguata" e limitando la potenziale tossicità
- Il <u>numero</u> delle lesioni non è un limite assoluto. La selezione è frutto di una valutazione che tenga conto della evolutività della malattia e della tecnica del trattamento

Targeting

- E' fondamentale considerare le possibili fonti di errore
 - Errore di definizione e di delineazione del bersaglio
 - Errore di posizionamento del paziente
 - Organ Motion indotto dal respiro

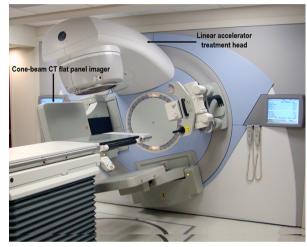

- L'impatto è maggiore per le tecniche a elevata disomogeneità e si traduce in un rischio aumentato di:
- Sottodosaggio del bersaglio
- Incremento di tossicità


Image-guided Radiotherapy - IGRT

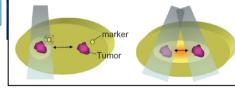
Breathing Adapted Radiotherapy

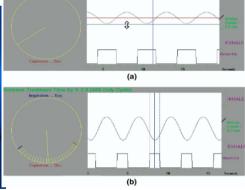
Breath-Hold

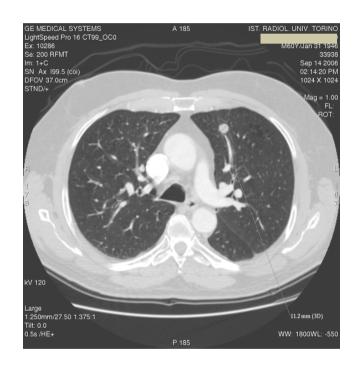
Free-breathing Synchronisation

Controlled Breath-hold (ABC)

Voluntary Breath-hold


Free-breathing Moving-beam (tracking)


Free-breathing Gating



Minimizzare il movimento indotto dal respiro

"Inseguire" il bersaglio nel corso dei suoi movimenti legati al respiro

Sincronizzare l' irradiazione con una predefinita fase respiratoria (espirio) **RECIST criteria**: not useful for SBRT → not necessarily expected to produce a complete response in order to permanently control a tumor (... and vice versa)

Role of PET/CT?

Early and late lung radiographi<mark>c injury fo</mark>llowing stereotactic body radiation therapy (SBRT)

Marco Trovo^{a,b}, Anna Linda^{c,d}, Issam El Naga^b, Cylen Javidan-Nejad^d, Jeffrey Bradley^{b,*}

Lung Cancer 2009

Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): Results of a serial follow-up CT study

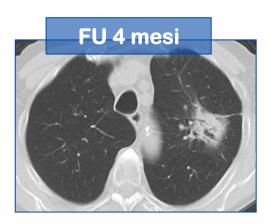
Matthias Guckenberger^{a,*}, Katrin Heilman^a, Joern Wulf^b, Gerd Mueller^a, Gabriele Beckmann^a, Michael Flentje^a

*Department of Radiation Oncology, Julius-Maximilians University, Wuerzburg, Germany, *Department of Radiooncology, Lindenhofspital, Bern, Switzerland

Radiother Oncol 2007

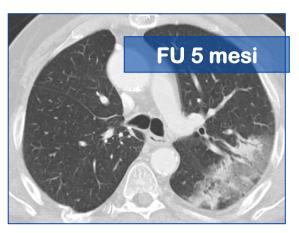
CT APPEARANCE OF RADIATION INJURY OF THE LUNG AND CLINICAL SYMPTOMS AFTER STEREOTACTIC BODY RADIATION THERAPY (SBRT) FOR LUNG CANCERS: ARE PATIENTS WITH PULMONARY EMPHYSEMA ALSO CANDIDATES FOR SBRT FOR LUNG CANCERS?

Tomoki Kimura, M.D., Ph.D.,*† Kanji Matsuura, M.D., Ph.D.,* Yuji Murakami, M.D.,* Yasutoshi Hashimoto, M.D.,* Masahiro Kenjo, M.D.,* Yuko Kaneyasu, M.D., Ph.D.,* Koichi Wadasaki, M.D., Ph.D.,* Yutaka Hirokawa, M.D., Ph.D.,[‡] Katsuhide Ito, M.D., Ph.D.,* and Motoomi Okawa, M.D., Ph.D.,†

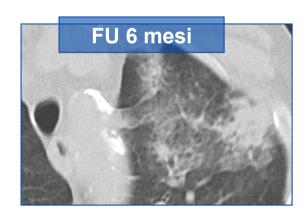

IJROBP 2006

a Department of Radiation Oncology at the Oncologic Referral Center of Aviano, Italy

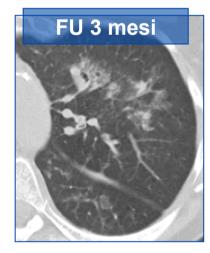
b Department of Radiation Oncology, Washington University School of Medicine, St. Louis, United States


c Department of Radiology at the University of Udine, Italy

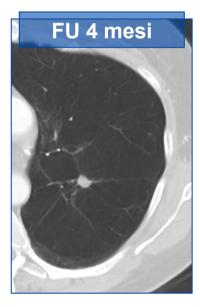
d Department of Diagnostic Radiology at the Mallinckrodt Institute of Radiology, St. Louis, United States


DIFFUSE CONSOLIDATION

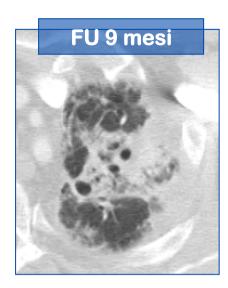
Diffuso e omogeneo incremento dell'attenuazione parenchimale, che oscura vasi e vie aeree


DIFFUSE GGO

Sfumato incremento densità. Strutture bronco-vascolari identificabili

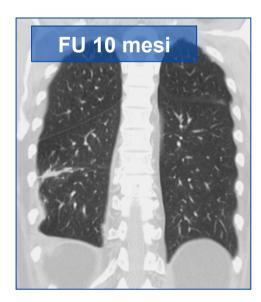

PATCHY CONSOLIDATION AND GGO

Aree sparse di aumento della densità, alcune sfumate altre compatte



PATCHY GGO

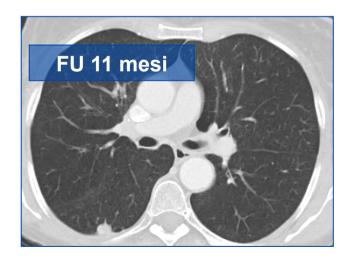
Aree sparse di sfumato incremento di densità, con parenchima normale



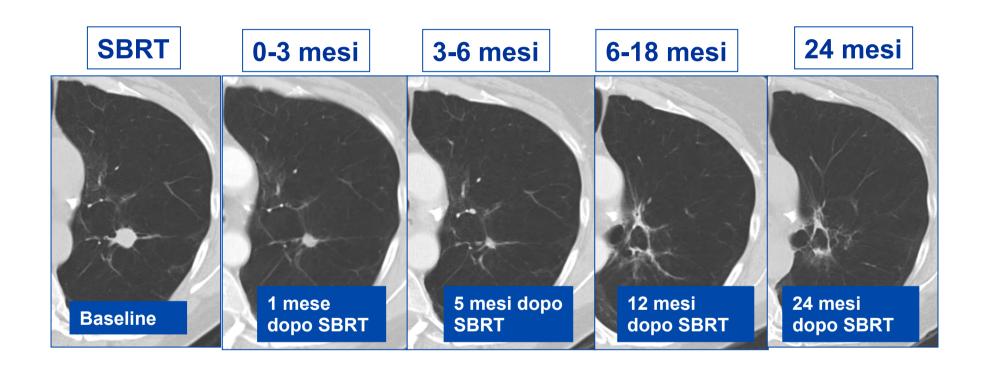
NESSUNA MODIFICA

MODIFIED CONVENTIONAL PATTERN

Consolidazioni parenchimali, perdita di volume, bronchiectasie

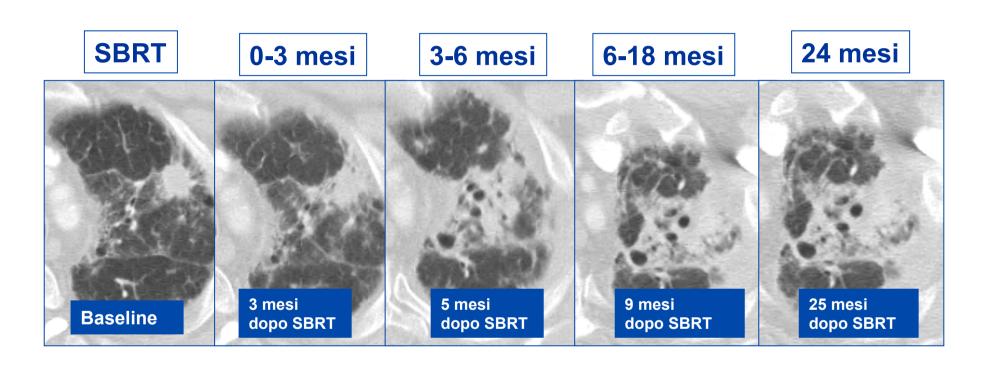


SCAR-LIKE PATTERN


MASS-LIKE PATTERN

Area di addensamento focale limitata alla regione della neoplasia

NESSUNA MODIFICA


Pattern evolutivi – diagnosi differenziale con PD

Non lesioni radiologiche. Risposta parziale Non lesioni radiologiche. Risposta parziale

Fibrosi Scar-like Non lesioni significative. Risposta completa

Pattern evolutivi – diagnosi differenziale con PD

Patchy GGO

Diffuse consolidation

Consolidazione più densa, bronchiectasie

Non ulteriori modificazioni

Conclusioni (2)

- La SRT delle metastasi polmonari in pazienti oligometastatici è un trattamento efficace con basso profilo di tossicità
- Dosi "adeguate" sono preferibili in ottica "curativa", anche se l'impatto sulla sopravvivenza è incerto
- La selezione dei pazienti resta l'aspetto cruciale ... e più controverso
- In generale, andrebbero applicati gli stessi criteri di selezione utilizzati per definire le indicazioni alla metastasectomia
- Sono indispensabili procedure IGRT e sono auspicabili tecniche di controllo del respiro