Second line therapy of glioblastoma: chemotherapy

Salvatore Grisanti, Laura Deiana, Rebecca Pedersini and Alfredo Berruti

Department of Medical Oncology, Spedali Civili di Brescia & University of Brescia

Disclosure of conflict of interest

None to disclose

Outline

Defining the problem

Options for second line chemotherapy

The metabolic puzzle: an emerging target

Defining the problem

GBM mortality rate: <5% survival at 5 years

George Gershwin, 1937 12 months survival Ted Kennedy, 2009 13 months survival Princess Marina, Duchess of Kent, 1968 14 months survival

Second line chemo in GBM: why?

- 1. Epidemiological: >75% GBM patients will recur and die within 5 years from diagnosis Warning! ECM question
- Methodological: second line chemotherapies offer unique models of activity that could be used in first line

Options for second line chemotherapy

No standard for second line chemo ESMO clinical practice guidelines v.2010

Recurrent disease

For patients progressing after prior chemotherapy, there is no established chemotherapy regimen available ...

Single-agent nitrosourea therapy may achieve tumour control in some patients, ... [II, C].

High imaging response rates and a steroid-sparing effect have been observed with administration of bevacizumab (+/- *irinotecan*). However, the effect is frequently short lived and may be largely due to changes in vascular permeability. The effect on life expectancy remains unknown [III, C].

On the basis of the available evidence bevacizumab is not currently approved by the European Medicines Agency for recurrent glioblastoma.

Annals of Oncology, Volume 21 | Supplement 5 | May 2010 doi:10.1093/187-191

Activity of second line mono-chemotherapy of GBM

Drug/schedule	Author/year	ORR	6-PFS	Median OS
TMZ rechallenge 50 mg/sqm continuous dose	Perry, 2010	11%	24%	9.3 months
Lomustine 100-130 mg/sqm q 6 w	Wick, 2010	PR: 4% SD: 36%	19%	7.1 months
Carmustine 100 mg/sqm q 6w + Irinotecan 175 mg/sqm q 1w	Brandes, 2004	PR: 21% SD: 50%	30%	13 months
Fotemustine 100 mg/sqm (induction+mantainance)	Brandes, 2009	PR: 7% SD: 35%	21%	6 months
Irinotecan 400 mg/sqm q 3 w	Chamberlain, 2002	PD: 100%	nr	nr
Procarbazine 150 mg/sqm/d x 28d	Yung, 2000	PR: 5% SD: 27%	8%	6 months
PCV	Brada, 2010	nr	30%	6.7 months

Antiangiogenic therapy rationale in GBM

GBMs are hypervascular tumors

Antiangiogenic agents in phase II/III trials

Table 1 Antiangiogenic agents in clinical trials for high-grade glioma				
Primary target	Agent	Other targets	Mechanism of action	
VEGF-A	Aflibercept (VEGF Trap)	VEGF-B, PIGF	Soluble decoy receptor	
VEGF-A	Bevacizumab	None	Monoclonal antibody	
VEGFR-2	Cediranib (AZD2171)	All VEGFR subtypes, PDGFRβ, c-Kit	Tyrosine kinase inhibitor	
VEGFR-2	CT-322	All VEGFR subtypes	Adnectin	
VEGFR-2	Pazopanib	All VEGFR subtypes, PDGFR α and β , c-Kit	Tyrosine kinase inhibitor	
VEGFR-2	Sorafenib	VEGFR-3, B-Raf, PDGFRβ, c-Kit, Ras, p38α	Tyrosine kinase inhibitor	
VEGFR-2	Sunitinib	PDGFRβ, FLT3, c-Kit	Tyrosine kinase inhibitor	
VEGFR-2	Vandetanib (ZD6474)	EGFR	Tyrosine kinase inhibitor	
VEGFR-2	XL-184	c-Met, RET, c-Kit, FLT3, TIE2	Tyrosine kinase inhibitor	
CD36 receptor	ABT-510	None	Thrombospondin-1 mimetic peptide	
FGFR	Brivanib	VEGFR-2	Tyrosine kinase inhibitor	
HGF	AMG102	None	Monoclonal antibody	
Integrins $\alpha\nu\beta3$ and $\alpha\nu\beta5$	Cilengitide (EMD121974)	None	Synthetic Arg–Gly–Asp peptide	
PDGFRβ	Dasatinib	Src, BCR-ABL1, c-Kit, ephrin A2	Tyrosine kinase inhibitor	
PDGFRβ	Imatinib	BCR–ABL1, c-Kit	Tyrosine kinase inhibitor	
PDGFRβ	Tandutinib (MLN518)	FLT3, c-Kit	Tyrosine kinase inhibitor	

Abbreviations: BCR, breakpoint cluster region protein; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; FLT3, FL cytokine receptor; HGF, hepatocyte growth factor; PDGFR, platelet-derived growth factor receptor; PIGF, placental growth factor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

BRAIN Study: Open-Label, Multicentre, Randomised, Non-Comparative Study of Bevacizumab in Recurrent GBM

- Primary endpoints: 6-month PFS, ORR as assessed by a blinded IRF
- Other endpoints: PFS, OS, DOR
- The study was not designed to compare efficacy and safety between the two treatment arms

BEV = bevacizumab; DOR = duration of response; EIAED = enzyme-inducing anti-epileptic drug; GBM = glioblastoma; IV = intravenous; ORR = overall response rate; OS = overall survival; PFS = progression-free survival; q2w = every 2 weeks

Friedman 2009

BRAIN Study: Response Rate

• 6-month PFS = 42.6% wa

Warning! ECM question

• The ORR with single-agent bevacizumab was significantly better than that seen with historical controls (p<0.0001)

*Measured by a blinded IRF

BEV = bevacizumab; CI = confidence interval; DOR = duration of response; ORR = overall response rate; PFS = progression-free survival

Friedman 2009

BRAIN Study: Survival

J Clin Oncol 27:4733-4740. © 2009 by American Society of Clinical Oncology

Resistance to antiangiogenic therapy

No comparison exists between conventional chemo vs BSC vs antiangiogenic therapy

A non-randomized phase II trial of two different antiangiogenic strategies vs conventional chemotherapy vs BSC: a study from the Gruppo Neuro-Oncologico Bresciano

Results (1): demographics and pts allocation

- From April 2008 to June 2011: 30 patients sequentially observed
- Sunitinib/Irinotecan (n = 6)
- Bevacizumab/Irinotecan (n = 5)
- Fotemustine (n = 10)
- Best supportive care (n = 9)
- Median age at recurrence: 55 years (21-71)
 RPA score at diagnosis: III: 1 (3%) IV: 20 (67%) V: 9 (30%)
 ECOG PS at recurrence: 1: 18 (60%) 2: 10 (33%) 3: 2 (7%)

Results (2): evaluation of best radiological response

 Sunitinib/Irinotecan (n = 6)
CR: 0
PR: 0
SD: 1
PD: 5
• Bevacizumab/Irinotecan (n =
CR: 1
PR: 2
SD: 1
PD: 1
• Fotemustine (n = 10)
CR: 0
PR: 1
SD: 4
PD: 5

5)

Table 1. Current Response Criteria for Malignant Gliomas (Macdonald Criteria) ⁵			
Response	Criteria		
Complete response	Requires all of the following: complete disappearance of all enhancing measurable and nonmeasurable disease sustained for at least 4 weeks; no new lesions; no corticosteroids; and stable or improved clinically		
Partial response	Requires all of the following: ≥ 50% decrease compared with baseline in the sum of products of perpendicular diameters of all measurable enhancing lesions sustained for at least 4 weeks; no new lesions; stable or reduced corticosteroid dose; and stable or improved clinically		
Stable disease	Requires all of the following: does not qualify for complete response, partial response, or progression; and stable clinically		
Progression	Defined by any of the following: ≥ 25% increase in sum of the products of perpendicular diameters of enhancing lesions; any new lesion; or clinical deterioration		

Results (3): survival

The future of antiangiogenic therapy: combination therapy with Nitrosourea-based chemotherapy ? A randomized phase II study of bevacizumab versus bevacizumab plus lomustine versus lomustine single agent in recurrent glioblastoma: the Dutch BELOB study.

A randomized phase II study of bevacizumab versus bevacizumab plus lomustine versus lomustine single agent in recurrent glioblastoma: the Dutch BELOB study.

Treatment	n	% 9 mo OS [95% CI]	Median PFS (mo)	% 6 mo PFS [95% CI]
BEV	50	38% [25, 51]	3	18 [9, 30]
Lomustine	46	43% [29, 57]	2	11 [4, 22]
BEV/lomustine 90 mg/m ²	44	59% [43, 72]	4	41 [26, 55]
BEV/lomustine 110 mg/m²	8	88% [39, 98]	11	50 [15, 77]

Taal et al, ASCO 2013

The metabolic puzzle: an emerging target

Clinical background

• Diabetes mellitus and hyperlipidaemia are associated with decreased survival in GBM

• Metformin has anticancer properties and potentiates TMZ activity in GBM

• Statins at low dose are thought to have anticancer properties by inhibiting tumor angiogenesis

Components of the puzzle

Energetic sources in normal and malignant cells: the Warburg effect

Metabolic interactions between neurons and astrocytes

Metabolic interactions between neurons and astrocytes

Glutamine, glutamate and epilepsy

Glutamine, glutamate and epilepsy

Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme

Anna Rosati, Pietro Luigi Poliani, Alice Todeschini, Manuela Cominelli, Daniela Medicina, Marco Cenzato, Edda Lucia Simoncini, Stefano Maria Magrini, Michela Buglione, Salvatore Grisanti, and Alessandro Padovani

Rosati et al, Neuro-Oncol 2013

Glutamine sinthetase in GBM

Immunostaining	N		
	Pts with epilepsy (n = 34)	Pts without epilepsy (n = 49)	Р
GS expression			
Absent	7 (20.6)	4 (8.2)	
Present	27 (79.4)	45 (91.8)	.180
Intensity of staining			
Absent/low	17 (50)	7 (14)	<.0001
Moderate/strong	17 (50)	42 (86)	

Conclusions (1)

• There is no a standard second line chemotherapy for recurrent GBM;

• Nitrosourea-based chemotherapy is active (ORR, PFS);

• Bevacizumab is standard treatment in rGBM in USA but not in Europe; it increases PFS and radiological response; continued therapy offers prolonged response but resistance ultimately develops;

Conclusions (2)

• Combination therapy of Bevacizumab + Nitrosourea chemotherapy is promising

• There is a strong rationale to exploit the pathways of energetic metabolism as possible therapeutic targets