

ATTUALITÀ NELLA TERAPIA INTEGRATA LOCOREGIONALE DELLE NEOPLASIE DELLE VIE AEREE DIGESTIVE SUPERIORI

Coordinatori: Salvatore Pisconti, Alfredo Procaccini, Giovanni Silvano

ATTUALITA' TERAPEUTICHE NEL CONTROLLO DEL DOLORE

Taranto, 12-14 gennaio 2012 Grand Hotel Delfino

THERE HAS BEEN PROGRESS IN PAIN MANAGEMENT ?

OPIUM IS THE OLDEST PAIN-KILLER

DRUG – USE	YEAR - HISTORY
Opium	"bringer of sleep and forgetfulness" Homer, 900 BC.
Multiherbal source of some 200 forms of pain relief	Hippocratic Corpus, 800-400 BC
Willow Bark	Reverend E. Stone began using willow bark, 1763
Aspirin	Hoffman developed commercial aspirin, 1893
Paracetamol	1893
Morphine	1917
"Optimum dose of morphine should be 10mg, 6 hourly intramuscularly post-op"	Henry Knowles Beecher, 1946 (JAMA)

- Morphine
- Buprenorphine
- Dextromoramide
- Dipipanone
- Hydromorphone
- Methadone
- Nalbuphine
- Oxycodone (IR, SR)
- Fentanyl

British Journal of Anaesthesia 107 (1): 19–24 (2011) Advance Access publication 30 May 2011 · doi:10.1093/bja/aer126

An update on analgesics

I. Power*

Royal Infirmary, University of Edinburgh—Anaesthesia, Critical Care and Pain Medicine, 51 Little France Crescent, Edinburgh EH16 4SA, UK * E-mail: ian.power@ed.ac.uk

Fluid responsheness
 Poediatric anaesthesia
 Research priorities in anaesthesia

COLUMN

"progress in terms of the introduction of new drugs has been incredibly slow"

Power I. Br J Anaesth 2011; 107: 19–24.

Pain 3

Treatment of cancer pain

Russell K Portenoy

2236

www.thelancet.com Vol 377 June 25, 2011

Conclusion

Although several decades of experience and research have not changed the consensus that opioid-based pharmacotherapy is the mainstay approach for the longterm treatment of chronic pain in populations with active cancer, there have been striking changes in the clinical approach to this problem. With analgesic strategies integrated into a palliative plan of care, there is increasing hope that patients can experience cancer with a minimum of suffering. Nonetheless, the treatments used have very little supporting evidence and there continues to be a pressing need for more research to provide comparative and long-term data pertinent to current treatments and novel treatment strategies for refractory conditions. Efforts to bring cost-effective strategies to resource-poor areas of the world should have equal priority.

CANCER PAIN: DIMENSION OF THE PROBLEM

DIMENSION OF THE PROBLEM

Support Care Cancer (2010) 18:801–810 DOI 10.1007/s00520-009-0712-5

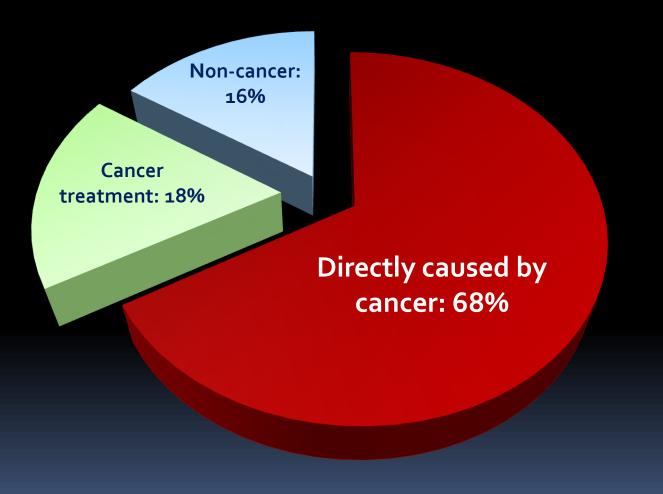
ORIGINAL ARTICLE

Anxiety, depression, and pain: differences by primary cancer

Dena J. Fischer • Dana Villines • Young Ok Kim • Joel B. Epstein • Diana J. Wilkie

> "Pain is a presenting symptom in 20 to 50 % of cancer patients"

Pain and symptom management


A prospective study of the pathophysiology and clinical characteristics of pain in a palliative medicine population

Terence Gutgsell, MD Declan Walsh, MSc, FACP, FRCP (Edin) Donna S. Zhukovsky, MD, FACP Francisco Gonzales, MD Ruth Lagman, MD

American Journal of Hospice & Palliative Care Volume 20, Number 2, March/April 2003

100 cancer patients with pain reported

DIMENSION OF THE PROBLEM CAUSE OF CANCER PAIN

Gutgsell T Eet al. Am J Hosp Palliat Care. 2003; 20: 140–8.

DIMENSION OF THE PROBLEM

ANATOMIC SITE	%
Chest	20
Abdomen	20
Extremity	20

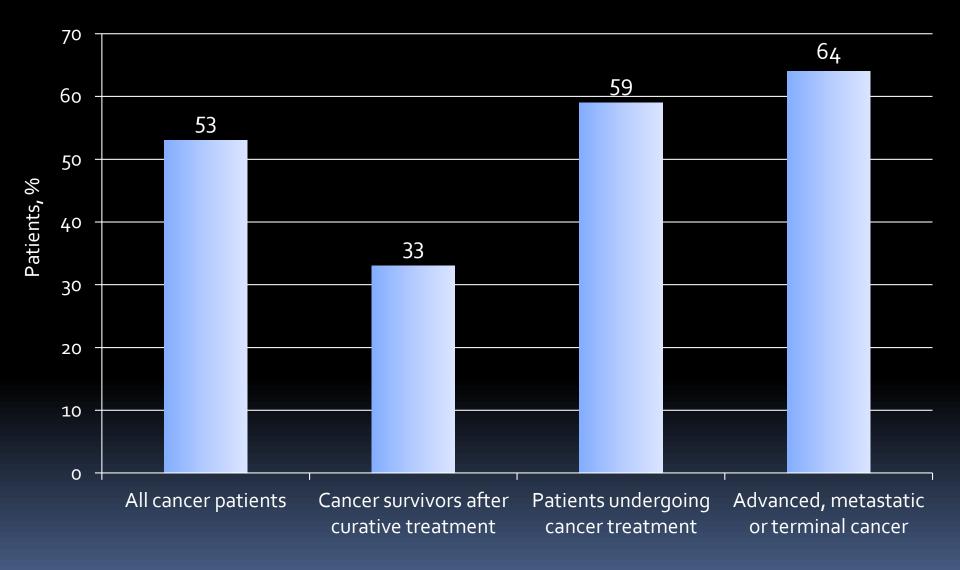
- Usual pain intensity: moderate to severe 53%
- Intermittent pain: 53%
- Continuous pain: 47%

Gutgsell T Eet al. Am J Hosp Palliat Care. 2003; 20: 140–8.

review

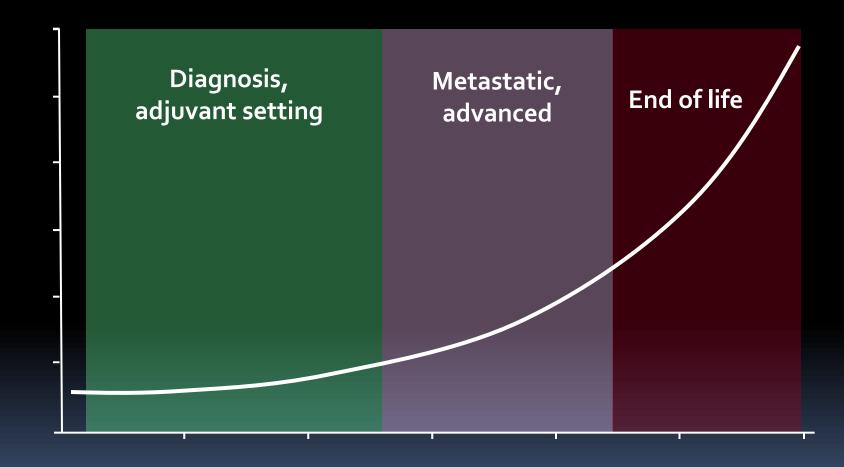
Annals of Oncology 18: 1437–1449, 2007 doi:10.1093/annonc/mdm056 Published online 12 March 2007

Prevalence of pain in patients with cancer: a systematic review of the past 40 years


M. H. J. van den Beuken-van Everdingen¹*, J. M. de Rijke¹, A. G. Kessels², H. C. Schouten³, M. van Kleef⁴ & J. Patijn¹

¹Pain Management and Research Centre, University Hospital Maastricht; ²Department of Clinical Epidemiology and Medical Technology Assessment, University Hospital Maastricht; ³Department of Internal Medicine, University Hospital Maastricht; ⁴Department of Anaesthesiology, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands

Received 18 December 2006; revised 11 January 2007; accepted 12 January 2007


52 studies

PREVALENCE OF CANCER PAIN

van den Beuken-van Everdingen MH et al. Ann Oncol. 2007;18:1437–49

PREVALENCE OF CANCER PAIN

Pain intensity

Time

EPIDEMIOLOGY – PREVALENCE OF CANCER PAIN

POOLED CANCER PAIN PREVALENCE BY CANCER TYPE

Cancer location	Average pain prevalence, %
Head/neck	70
Gynecological	60
Gastrointestinal	59
Lung/bronchus	55
Breast	54
Urogenital	52

"...although pain was reported by over half of patients with all type of cancer"

van den Beuken-van Everdingen MH et al. Ann Oncol. 2007;18:1437–49

PALLIATIVE CARE SECTION Carmen R. Green, MD,*^{†‡} and Tamera Hart-Johnson, MS*

EPIDEMIOLOGY – PREVALENCE OF CANCER PAIN

Original Research Article Cancer Pain: An Age-Based Analysis

- Pain is seen in at least half of patients actively involved in cancer treatment.
- Cancer pain in 65% of patients.
- Patients younger than 65 years were significantly more likely to experience pain compared with older patients.
- More pain flares in younger patients with cancer pain.

Pain Medicine 2010; 11: 1525–1536 Wiley Periodicals, Inc.

EPIDEMIOLOGY – CANCER SURVIVORS

BREAST

TIME AFTER TREATMENT	%
First 6 months	26-47
6-12 months	20-23
1-2 years	21-41
2-5 years	19-41

- 54% of prostate cancer survivors up to 5 years after tretament
- 27% of colorectal cancer survivors more than 5 years after diagnosis
- Slightly pain decrease 6 months after treatment among gynecological cacner patients, stable up to 24 months after treatment

Harrington CB et al. Int J Psychiatry Med 2010; 40: 163–81.

THERE AS BEEN PROGRESS IN PAIN MANAGEMENT ?

Annals of Oncology 19: 1985–1991, 2008 doi:10.1093/annonc/mdn419 Published online 15 July 2008

Prevalence of undertreatment in cancer pain. A review of published literature

S. Deandrea^{1,2*}, M. Montanari^{3,4}, L. Moja⁵ & G. Apolone^{3,4}

¹Laboratory of Epidemiological Methods, Department of Epidemiology, Mario Negri Institute for Pharmacological Research, Milano; ²Department of Epidemiology, Institute of Medical Statistics and Biometry, University of Milano, Milano; ³Center for the Evaluation and Research on Pain, Department of Oncology, Mario Negri Institute for Pharmacological Research, Milano; ⁴Laboratory of Translational and Outcome Research, Department of Oncology, Mario Negri Institute for Pharmacological Research, Milano; ⁵Department of Oncology, Italian Cochrane Centre, Mario Negri Institute for Pharmacological Research, Milano;

An average of 43% of cancer patients receive inappropriate care for cancer

BARRIERS TO CANCER PAIN MANAGEMENT

PATIENT FACTORS

- Reluctance to report pain
- Poor treatment adherence
- Cognitive issues and affective distress may limit reporting
- Fear of addiction or developing tolerance
- Fear of side effects
- Effort to be a "good patient" by tolerating pain
- Belief that doctor should focus on cancer cure rather than pain relief
- Concerns about negative views of family, friends, coworkers if patient uses pain medications

BARRIERS TO CANCER PAIN MANAGEMENT

PROVIDER FACTORS

- Poor communication about pain experience
- Preference for weaker analgesics
- Failure to assess pain or use pain-measuring instruments routinely
- Inadequate knowledge about pain management and opioid dosing

- PAIN ASSESSMENT
- MANAGEMENT OF CANCER PAIN
- MOLECULES NEUROBIOLOGY
- OPIOIDS
- "NEW MOLECULES"
- ROUTES OF ADMINISTRATION
- DOSAGE
- MANAGEMENT OF SIDE EFFECTS
- OTHER TREATMENTS FOR CANCER PAIN

- **PAIN ASSESSMENT** lacksquare
- CACINER PAINSPECIALISTS MANAGEMENT OF CANCER lacksquare
- **MOLECULES**
- **OPIOIDS**
- **"NEW MOI**
- PHARMACOLOGISTS AMESTESIASPECIALISTS ROUT

ENT OF SIDE EFFECTS

EATMENTS FOR CANCER PAIN

43 % OF PATIENTS DO NOT RECEIVE ADEQUATE PAIN RELIEF

Deandrea S et al. Ann Oncol 2008; 19: 1985–91.

Randomized Clinical Trial of an Implantable Drug Delivery System Compared With Comprehensive Medical Management for Refractory Cancer Pain: Impact on Pain, Drug-Related Toxicity, and Survival

By Thomas J. Smith, Peter S. Staats, Timothy Deer, Lisa J. Stearns, Richard L. Rauck, Richard L. Boortz-Marx, Eric Buchser, Elena Català, David A. Bryce, Patrick J. Coyne, and George E. Pool for the Implantable Drug Delivery Systems Study Group

> Journal of Clinical Oncology, Vol 20, No 19 (October 1), 2002: pp 4040-4049 DOI: 10.1200/JCO.2002.02.118

- PAIN REDUCTION (VAS)
 39.1 % for CMM 51.5 % for IDDS
- COMPOSITE TOXICITY (CTC)
 17.1 % for CMM
 50.3 % for IDDS

(P: 0.004)

TRICKS IN PAIN MANAGEMENT

ONCOLOGIC PAIN

A MECHANICISTIC APPROACH

• SOMATIC?

 \bullet

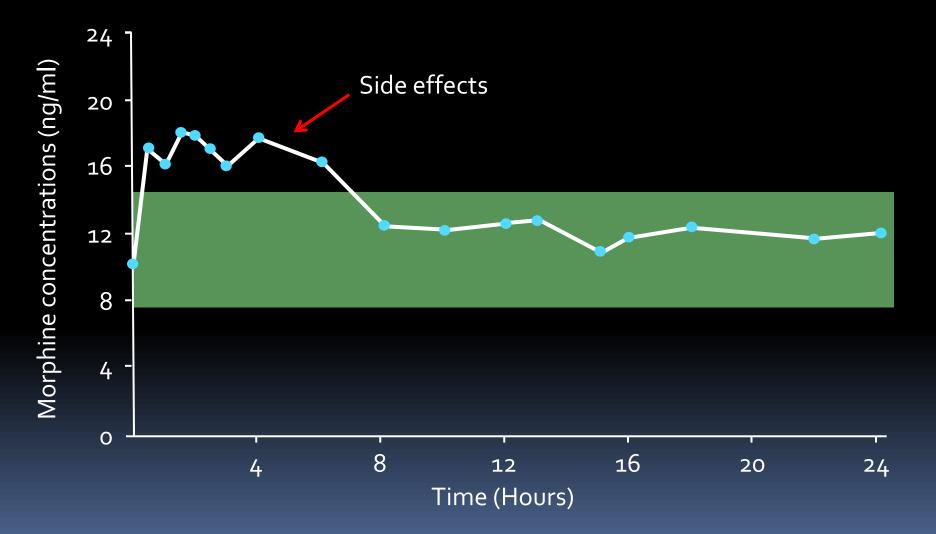
- HISTORY
 - PHISICAL EXAMINATION

• NEUROPATHIC?

VISCERAL?

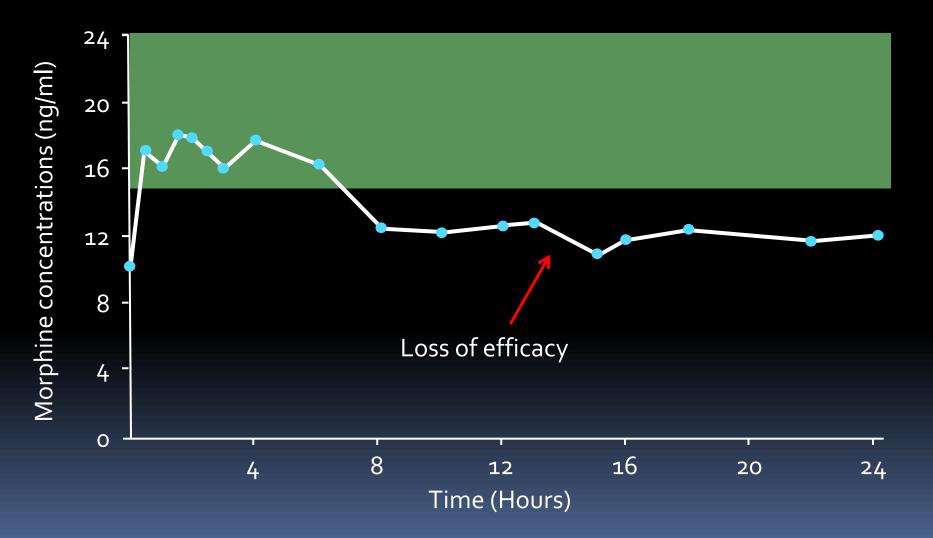
• DEDICATED TESTING

ONCOLOGIC PAIN

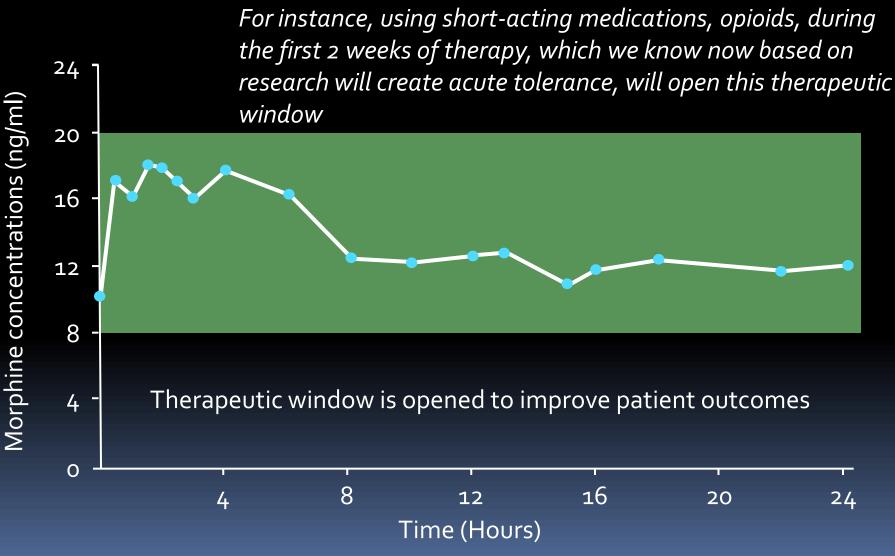

CURRENT TRENDS:

OPIOD THERAPY

STARTING THERAPY


"If you look at all the studies, doesn't matter – cancer patient, osteoarthritis low back pain – 37% dropout rates during the first 2 weeks of therapy regardless of the drug – oxycodone, morphine-controlled release, oxymorphone-controlled release. And that is because there is a high incidence of side effects".

PHARMACOKINETIC AND PHARMACODYNAMIC RELATIONSHIP


De Leon-Cassola O. Oncol Nurs Forum 2008; 35 (s): 7-12.

PHARMACOKINETIC AND PHARMACODYNAMIC RELATIONSHIP

De Leon-Cassola O. Oncol Nurs Forum 2008; 35 (s): 7-12.

PHARMACOKINETIC AND PHARMACODYNAMIC RELATIONSHIP

De Leon-Cassola O. Oncol Nurs Forum 2008; 35 (s): 7-12.

DOSETITRATION

- Monitor and document pain scores.
- Monitor and document use of rescue medications.
- Monitor and document psychosocial variables of functioning. sleep activities of daily living (this will be the most important piece of information to make decisions regarding your titration of the drugs)
- Monitor and document risk of drug abuse/diversion.
- Adjust dose of the long-acting opiate based on pain scores and amount of rescue medication used.
- Increase dose and rescue as needed

PEARLS

- Morphine therapy over time
- Morphine therapy in patients with renal dysfunction
- Patients receiving multiple medications metabolized by the CYP450 system
- Implementing and stopping transdermal fentanyl therapy
- Methadone therapy

- Morphine therapy over time
- Morphine therapy in patients with renal dysfunction
- PATIENTS RECEIVING MULTIPLE MEDICATIONS METABOLIZED BY THE CYP450 SYSTEM
- Implementing and stopping transdermal fentanyl therapy
- Methadone therapy

OPIOD METABOLISM

Opioid	Phase 1 metabolism	Phase 2 metabolism	Comment
Morphine ¹²	None	Glucuronidation via UGT2B7	
Codeine ¹³	CYP2D6	None	
Hydrocodone ¹⁴	CYP2D6	None	One of the metabolites of hydrocodone is hydromorphone, which undergoes phase 2 glucuronidation
Oxycodone ¹¹	CYP3A4 CYP2D6	None	Oxycodone produces a small amount of oxymorphone, which must undergo subsequent metabolism via glucuronidation
Methadone ¹⁵	CYP3A4 CYP2B6 CYP2C8 CYP2C19 CYP2D6 CYP2C9	None	CYP3A4 and CYP2B6 are the primary enzymes involved in methadone metabolism; other enzymes play a relatively minor role
Tramadol ¹⁶	CYP3A4 CYP2D6	None	
Fentany1 ¹⁰	CYP3A4	None	
Hydromorphone ¹⁷	None	Glucuronidation via UGT2B7	
Oxymorphone ¹⁸	None	Glucuronidation via UGT2B7	

CYP = cytochrome P450; UGT2B7 = uridine diphosphate glucuronosyltransferase 2B7.

CYP2D6 and CYP34A4 CRITICALLY IMPORTANT

SUBSTRATES AND INHIBITORS: Increase opioid concentrations INDUCERS: Hypermetabolize

Smith HS. Mayo Clin Proc 2009; 84: 613-24.

CYP3A4

	SUBSTRATES			INHIBITO	RS	INDUCI	ERS
CCBs	Benzodiaz.	Antibiotics	CCBs		Antibiotics	Statins	
Amlodipine	Alprazolam	Azithromycin	Amlodipine		Ciprofloxacin	Antiretrov	iral
Diltiazem	Clonazepam	Clarithromycin	Diltiazem		Clarithromycin	Hypnotics	
Nicardipime	Midazolam	Erythromycin	Nicardipime		Erythromycin	Anticonvu	sant
Nifedipime	Triazolam	Antifungal	Nifedipime		Antifungal	Carbamaze	epine
Verapamil	SSIRs	Itraconazole	Verapamil		Retrovirals	Oxcarbaze	pine
Statins	Citalopram	Ketoconazole	Statins		Chemother.	Phenobarb	oital
Atorvastatin	Fluoxetine	Chemother.	Simvastatin		Imatinib	Phenitoin	
Lovastatin	Other Psyc.	Cyclophosphamide	e Antiarrythm.		lrinotecn	Valproic ac	
Simvastatin	Bromocriptine	Docetaxel	Amiodarone		Tamoxifen	Foods	
Other Cardiov.	Carbamazepine	Doxorubicin	Quinidine		Hormon	Caffeine	бл.
Amiodarone	Haloperidol	Etoposide	Psychiatr.		Etinilestradiol		er Dr
Digoxine	Risperidone	Gefitinib	Bromocriptine		Levonogestrel		ıl. Th
Ivabradine	Valproate	Ifosfamide	Comazepam		Raloxifene		F et c 10.
Quinidine	Venlafaxine	Paclitaxel	Fluoxetine		Other		iou S. 587-7.
Warfarin	Zolpidem	Tamoxifen	Haloperidol		Cimetidine		Adapted from Zhou SF et al. Ther Drug Monit 2007; 29: 687-710.
Phosphodiest.inh.	Zopiclone	Vinblastine	Nortriptyline		Foods		ted fr
Sildenafil	Retrovirals	Vindesine	Sertraline		Bergamottin (grapefruit)		Adap Monit

CYP3A4

Drug	Relative tumor activity	P450 Inactivation	P450 Activation
Etoposide	Testicular, lung, lymphoma, osteosarcoma	CYP34A4	
Paclitaxel	Ovary, Breast, Lung, Kaposi's	CYP34A4	
Docetaxel	Breast, lung, prostate, stomach, H&N	CYP34A4	
Tamoxifen	Breast	CYP34A4	
Vinblastine	Breast, bladdder, lung, lymphoma	CYP34A4	
Cyclophosphamide	Breast, sarcoma, ovarian		CYP34A4
Ifosfamide	Sarcoma		CYP34A4 and CYP2B6
Doxorubicin	Breast, sarcoma, ovarian		CYP34A4

CYP2D6

	SUBSTRATES		INHIBIT	ORS	INDUCERS
Anti-arrhythmics	Antipsychotics	Others	Anti-arrhythmics	Others	Rifampicin
Encaidine	Thioridazine	Amphetamine	Amiodarone	Clorpheniramine	Dexamethasone
Flecainide	Zuclopenthixol	Clorphenamine	Quinidine	Cimetidine	
Lidocaine	SSRIs	Dexomethorphan	Antipsychotics	Ranitidine	
Mexiletine	Duloxetine	Metoclopramide	Chlorpromazine	Celecoxib	
Propafenone	Venlafaxine	Phenformin	Reduced-Haloperidol	Doxorubicin	2450
Sparteine	Fluoxetine	Tamoxifen	Levomepromazine	Ritonavir	rt DA. Drug interactions: cytochromr P Indiana University School of Medicine. :du/clinpharm/ddis/table.aspx
Beta Blockers	Fluvoxamine		SSRIs	Ticlopidine	tochr J Meu vx
Alprenolol	Paroxetine		Citalopram		is: cy nool c le.as
Carvedilol	Tricyclics		Escitalopram		iction y Sch s/tab
Metoprolol	Amitriptyline		Fluoxetine		ntera /ersit
Propranolol	Amoxapine		Paroxetine		עם i ע Univ טharr
Timolol	Clomipramine		Sertraline		DA. <i>E</i> dianc //clinp
Antipsychotics	Desipramine		Tricyclics		hart I le. In ii.edu
Aripiprazole	Doxepine		Clomipramine		-lock n tab
Haloperidol	Imipramine		Other antidepressants		Adapted from Flockhart DA. Drug interactions: cytochromr P450 drug interaction table. Indiana University School of Medicine. http://medicine.iupui.edu/clinpharm/ddis/table.aspx
Perphenazine	Nortriptyline		Bupropione		apted ig inte p://m
Risperidone					Adı dru htt

PEARLS

- Morphine therapy over time
- Morphine therapy in patients with renal dysfunction
- Patients receiving multiple medications metabolized by the cyp450 system
- Implementing and stopping transdermal fentanyl therapy
- METHADONE THERAPY

Negative chronotropic effects

QTc interval prolongation (Polymorphic VT, torsade de pointes)

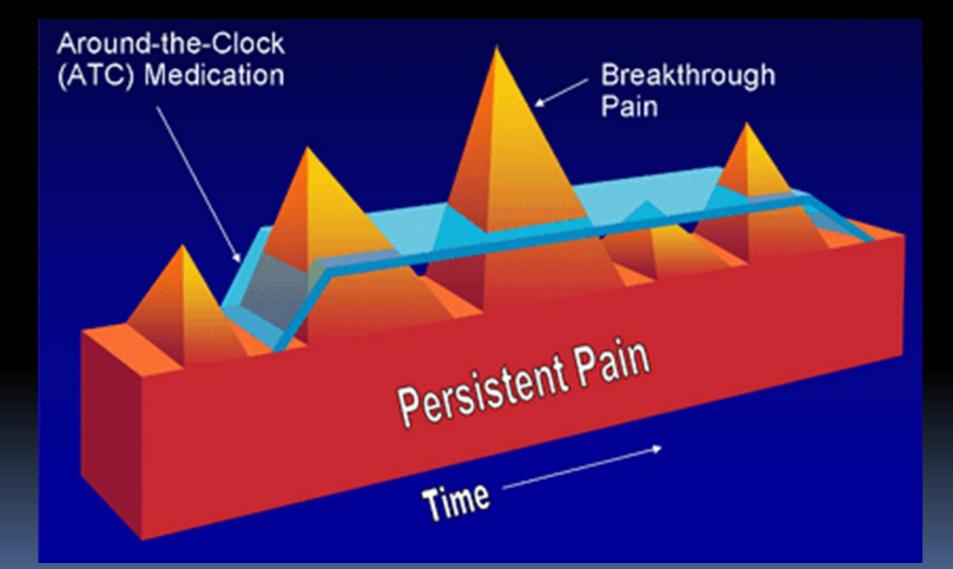
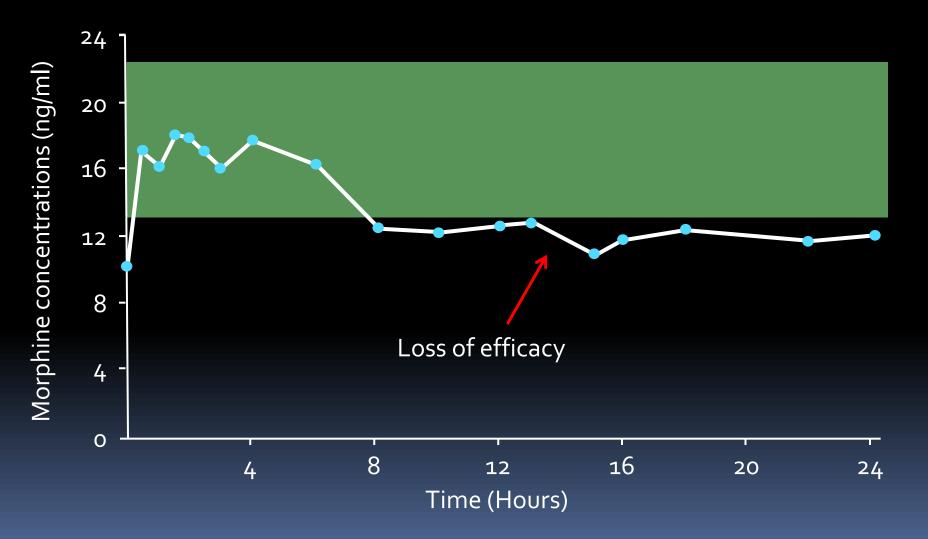

Oscar de Leon Cassola, Roswell Park Cancer Institute, NY

Table. Some Common Drugs That in Combination May Prolong the QT Interval.

Commonly Used Inhibitors of Cytochrome P-450 Enzymes	Cytochrome P-450 Enzymes Inhibited*	Cytochrome P-450 Enzymes Involved in Drug Metabolism	QT-Interval–Prolonging Drugs Metabolized by Major Cytochrome P-450 Enzymes
Amiodarone Antiretroviral agents	1A2, 2C9, 2D6, 3A4	1A2	Amitriptyline, haloperidol, imipramine, clozapine
Amprenavir	3A4	2C9	Amitriptyline, tamoxifen
Indinavir	3A4	2D6	Amitriptyline, desipramine, imip-
Nelfinavir	3A4	200	ramine, haloperidol, thiorida-
Ritonavir	2D6, 3A4		zine, tamoxifen
Saquinavir	3Å4	3A4	Cisapride, disopyramide, quini-
Antifungal agents		584	dine, pimozide, tamoxifen,
Fluconazole	2C9, 3A4		erythromycin, clarithromycin
Itraconazole	3Å4		crythroniyeni, clanthroniyeni
Ketoconazole	3A4		
Terbinafine	2D6		
Calcium-channel antagonists			
Diltiazem	3A4		
Verapamil	3A4		
Macrolide antibiotics			
Erythromycin	3A4		
Clarithromycin	3A4		
Selective serotonin-reuptake– inhibitor antidepressants			
Fluoxetine	2C19, 2D6		
Fluvoxamine	1A2, 2C19, 2C9, 3A4		
Paroxetine	2D6		
Sertraline	2C9, 2D6		
Quinolone antibiotics			
Ciprofloxacin	1A2, 3A4		

Liu b et al. N Engl J Med 2004; 351: 1053-56.


BREAKTHROUGH PAIN

BREAKTHROUGH PAIN

- END OF DOSE FAILURE
- INCIDENTAL PAIN
- BREAKTHROUGH PAIN

END OF DOSE FAILURE

De Leon-Cassola O. Oncol Nurs Forum 2008; 35 (s): 7-12.

CHARACTERISTICS OF TRUE BREAKTHROUGH PAIN

- MODERATE TO SEVERE INTENSITY
- RAPID ONSET (< 3 MINUTES IN 45% OF PATIENTS)
- RELATIVELY SHORT DURATION (< 30 min)
- FREQUENCY: 1-4 EPISODES PER DAY
- ASSOCIATED WITH MORE SEVERE PAIN CONDITIONS

ALL BREAKTHROUGH PAIN EVENTS ARE SOMATIC IN ORIGIN AND, THEREFORE, SHOULD BE TRETAED WITH OPIOIDS

Oscar de Leon Cassola, Roswell Park Cancer Institute, NY

CURRENT TRENDS

ADJUVANT THERAPY

ADJUVANT THERAPY

Triciclics antidepressants: side effects profile dictates choice

RANDOMIZED CLINICAL TRIALS INVOLVING FIRST- AND SECOND-LINE MEDICATIONS FOR PATIENTS WITH NEUROPATHIC PAIN

	Antidepressants		Calcium Channel Ligands		Topical	Opioid Receptor Agonists		
	Tricyclic Antidepressants	Duloxetine	Venlafaxine	Gabapentin	Pregabalin	Lidocaine Patch 5%	Opioid Analgesics	Tramadol
Peripheral NP								
Painful DPN	Positive	Positive	Positive	Both	Both	_	Positive	Positive
PHN	Positive	_	Negative	Positive	Both	Positive [†]	Positive	Positive
Painful polyneuropathy	Positive	_	Positive	Positive	_	Positive [†]	Positive	Positive
Phantom limb pain	Negative	_	_	Both	_	_	Positive	Positive
Postmastectomy pain	Positive	_	Negative	_	_	_	_	_
Guillain-Barré	_	_	_	Positive	_	_	_	_
syndrome								
Neuropathic cancer	Negative	_	_	Positive	_	_	_	_
pain								
Complex regional pain		—	—	Negative	—	—	—	—
syndrome (type I)								
Chronic lumbar root	Negative	—	—	—	—	—	Negative	—
pain								
Chemotherapy-induced	Negative	—	—	Negative	—	—	—	—
neuropathy								
HIV neuropathy	Negative	—	_	Negative	—	—	—	—
Central NP								
Central poststroke pain	Positive	_	_	_	Positive	—	—	—
Spinal cord injury pain	Negative	—	_	Positive	Positive	—	—	—

O'Connor AB et al. Am J Med 2009; 122 (105): 22-32.

TRICYCLIC ANTIDEPRESSANTS

Drug	Sedation	Ach effect	Orthostatism	Cardiac
Amitriptyline	+++	++++	+++	+++
Nortriptyline	+++	+	+	++
Desipramine	+	+	++	++
Doxepin	+++	++	++	++

Alvarez W Jr et al. Pharmacotherapy 2003; 23: 754-771.

ADJUVANT THERAPY

ANTICONVULSANTS

- TITRATE TO MAXIMUM DOSE
- SIDE EFFECTS MAY BE A PROBLEM
- HOWEVER, THEY SUBSIDE

RANDOMIZED CLINICAL TRIALS INVOLVING FIRST- AND SECOND-LINE MEDICATIONS FOR PATIENTS WITH NEUROPATHIC PAIN

	Antidepressants			Calcium Channel Ligands		Topical	Opioid Receptor Agonists	
	Tricyclic Antidepressants	Duloxetine	Venlafaxine	Gabapentin	Pregabalin	Lidocaine Patch 5%	Opioid Analgesics	Tramadol
Peripheral NP								
Painful DPN	Positive	Positive	Positive	Both	Both	_	Positive	Positive
PHN	Positive	_	Negative	Positive	Both	Positive [†]	Positive	Positive
Painful polyneuropathy	Positive	_	Positive	Positive	_	Positive [†]	Positive	Positive
Phantom limb pain	Negative	—	_	Both			Positive	Positive
Postmastectomy pain	Positive	—	Negative	—	—	—	—	_
Guillain-Barré	—	—	—	Positive	—		—	—
syndrome								
Neuropathic cancer	Negative	—	_	Positive	—	—	—	—
pain								
Complex regional pain	_	_	_	Negative	—	_	_	—
syndrome (type I)								
Chronic lumbar root	Negative	_	_	_	_	_	Negative	—
pain								
Chemotherapy-induced	Negative	—	—	Negative	—	—	—	—
neuropathy								
HIV neuropathy	Negative	—	—	Negative	—	—	—	-
Central NP								
Central poststroke pain	Positive	—	—	—	Positive	—	—	-
Spinal cord injury pain	Negative	—	—	Positive	Positive	—	—	-

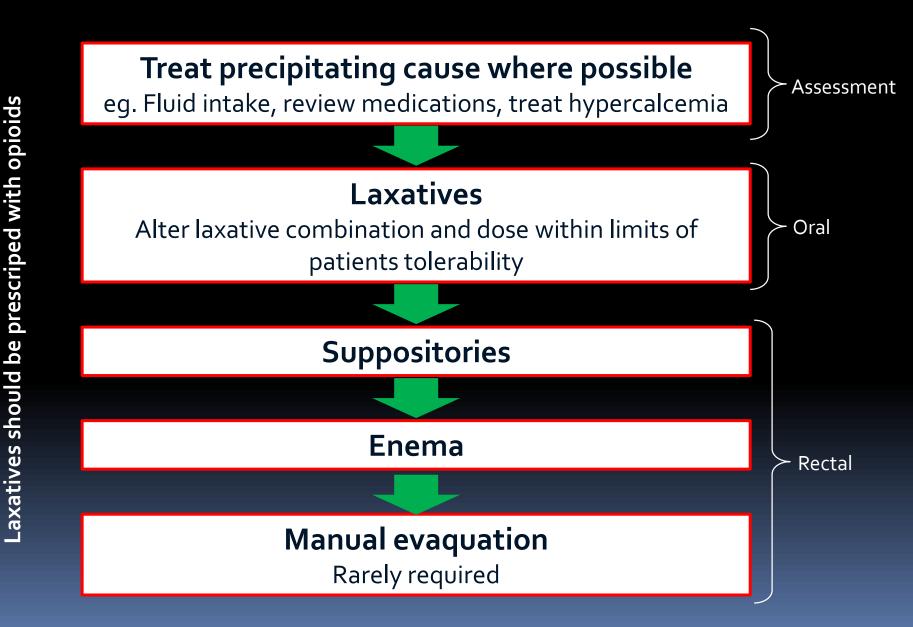
O'Connor AB et al. Am J Med 2009; 122 (105): 22-32.

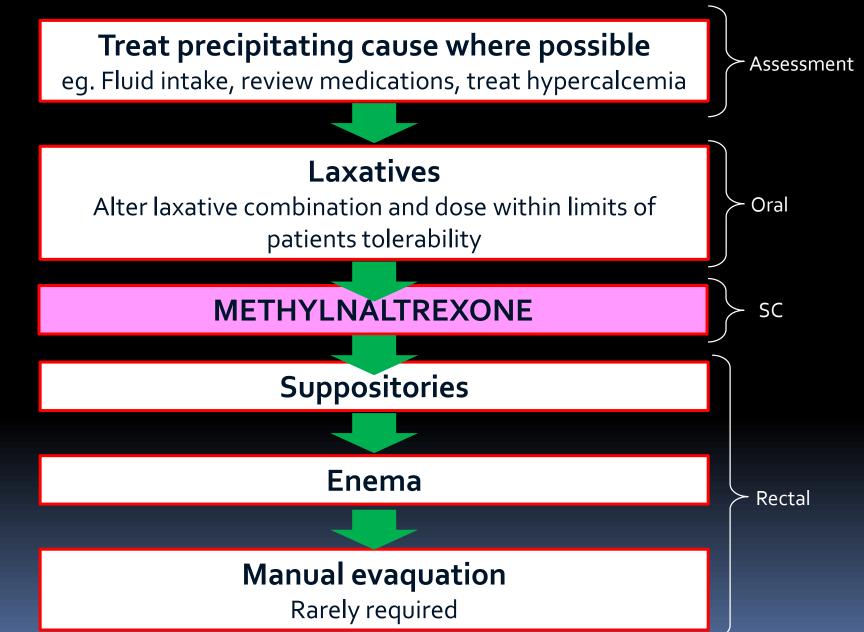
CANCER PAIN MANAGEMENT

Drug	Starting dose	Target dose	Side effects*	Renal exccretion	Hepatic pathways
Gabapentin	100-300	3600	Weight gain , twitching	> 95%	No
Oxcarbazepine	300	2400	Hypo Na+, SJS, EM	30%	Yes, ~ 50%
Pregabalin	50-100	900	Visula defects, weight gain	> 95%	No

* Dizziness, sedation, ataxia and diplopia

Mc Greeney BEet al. J Pain Symptom Mamnage 2009; 38 (2s): 15-27.


ADJUVANTTHERAPY


PATIENT FOLLOW-UP: THE FOUR A's

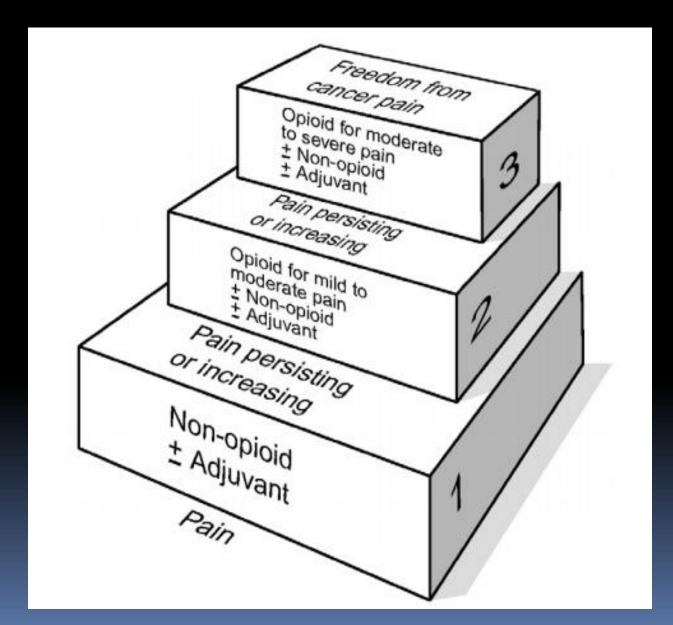
- ANALGESIA (pain relief)
- ACTIVITIES OF DAILY LIVING (psycosocial functioning)
- ADVERSE EFFECT (side effects)
- ABERRANT DRUG TAKING (addiction-related outcomes)

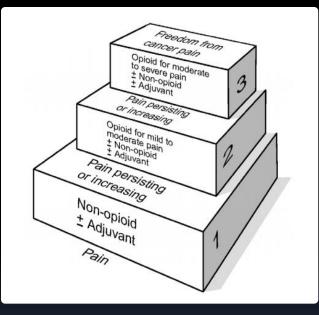
TREATMENT OPTIONS FOR OIC IN CANCER PAIN

TREATMENT OPTIONS FOR OIC IN CANCER PAIN

METHYLNALTREXONE DOSING SCHEDULE

The recommended dose is:


- 8 mg (for pts weighting 38-61 Kg)
- 12 mg (for pts weighting 62-114 Kg)
- Pts whose weight falls outside of the range should be dosed at 0,15 mg/kg
- Methylnaltrexone should be added to induce prompt bowel movement when response to laxative therapy has been insufficient
- The usual administration schedule is one single dose every other day. Doses may also be given with longer intervals , as per clinical need
- Patients may receive two consecutive doses 24 hours apart, when there as been no response (bowel movement) to the dose on the preceding day
- Local clinical guidelines may be taken into consideration

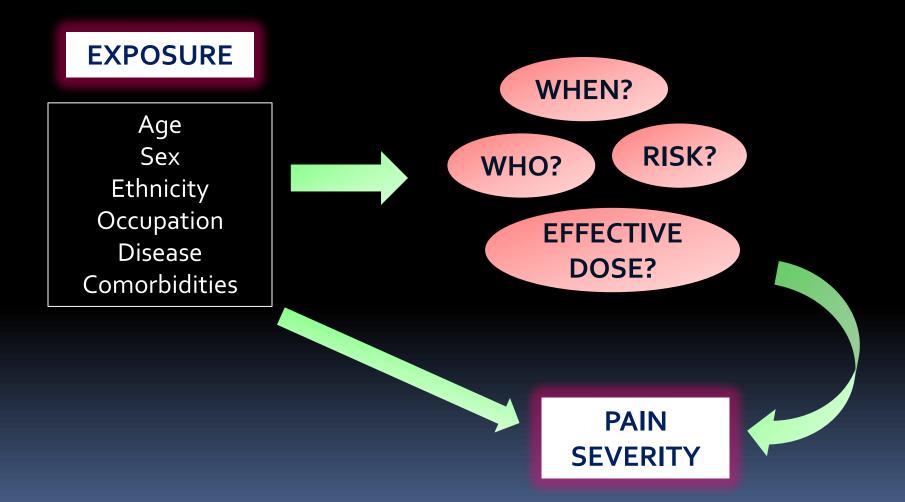

Miles CL et al. Cochrane Database Syst Rev 2006; 4: CD003448. Thomas J et al. N Engl J Med 2008; 358: 2332-42

CANCER PAIN MANAGEMENT CONCLUSIONS

- CURRENT PHARMACOLOGIC THERAPEUTHIC REGIMENS MAY BE IMPLEMENTED IN PATIENTS WITH PAIN-RELATED TO CANCER WITH A HIGH SUCCESS RATE – 90-95%
- THUS, 5-10% WILL NEED AN INVASIVE PROCEDURE
- THE KNOWLEDGE IS CONTINUOSLY EVOLVING, RESULTING IN BETTER PAIN CONTROL

WHO ANALGESIC LADDER

GENETIC AND NONGENETIC DETERMINANTS OF


CANCER PAIN MANAGEMENT

APPROACH TO EPIDEMIOLOGY OF PAIN

TRADITIONAL EPIDEMIOLOGY OF PAIN

Human Genome Project

COMPLETION OF HUMAN GENOME PROJECT

IDENTIFY THE ENTIRE SET OF GENES IN DNA ANALYZE GENETIC VARIATIONS AMONG HUMANS DISSEMINATE GENOME INFORMATION

EXAMINE ETHYCAL, SOCIAL AND LEGAL ISSUES

EACH PERSON'S GENOME IS SLIGHTLY DIFFERENT

- WHICH DIFFERENCES ALTER FUNCTION?
- WHICH DIFFERENCES MATTER?

GENETIC BACKGROUND CAN BE USED IN:

- ASSOCIATION STUDIES Variant and risk of disease
- OUTCOME STUDIES

Predict clinical outcomes Determine drug response Assist in the clinical decision making Tailor therapeutics

CLINICAL GOALS OF PHARMACOGENETICS
 Avoid adverse drug reactions
 Maximize drug efficacy
 Select responsive patients

GENETIC VARIATION

• PAIN TRAITS ARE MAINLY

- Polygenic (influenced by several genes, the effect may be additive or interactive)
- Multifactorial (both genetic and environmental factors contribute)
- SOME ARE (but rarely)
 - Monogenic

DEVELOPING GENETICS AS CLINICAL TOOL

- BEGIN WITH PHYSIOLOGY
 - What are the critical genes to be examined?
- CHOOSE THE RIGHT TARGET
 - Functional polymorphisms/variants
 - Reasonable allelic frequency
- THINK ABOUT STUDY DESIGN
 - End points
 - Study number
 - Statistical analysis

CANCER PAIN

Population	Candidate Genes	Outcome	Results
Lung (n: 446 non-Hispanic) 1	IL6, IL8; TNFα	Severe pain (≥ 7)	IL8-251T/A OR 2.35 (95% Cl, 1.1-5.0)
Pancreas (n: 156 non-Hispanic) ²	7 cytokine genes; 13 SNPs	Severe pain (≥ 7)	IL8-251 T/A OR 2.43 (95% Cl, 1.3-4.7)
			PTGS2 exon10+837 T>C OR: 0.33 (95% Cl 0.11-0.97)
Lung (n: 677 non-Hispanic) ³	37 inflammation genes; 59 SNPs	Severe pain (≥ 7)	TNFα – 308GA OR 1.67 (95% Cl 1.08-2.58)
			NFKBIA Ex6 + 50C>T OR 0.64(95% Cl 0.43-0.93)

¹Reyes-Gibby CC et al. Cancer Epidemiol Biomarker Prev 2007;16: 2745-51. ²Reyes-Gibby CC et al. J Pain Symptom Manage 2009; 894-902. ³Reyes-Gibby CC et al. Cancer Epidemiol Biomarker Prev 2009;18: 2636-42.

NONGENETIC FACTORS

Variable	Pain severity	OR (95% CI)	Р
	Severe/ nonsevere		
Stage of disease			
Early stage	34/291	1.0	
Advanced stage	69/252	2.34 (1.50-3.65)	0.001
Age (y)		· · · · · · · · · · · · · · · · · · ·	
>50	71/462	1.0	
≤50	35/109	2.10 (1.32-3.30)	0.002
Sex			
Male	47/304	1.0	
Female	59/267	1.43 (0.99-2.16)	0.06
Comorbidities			
Heart disease			
No	65/371	1.0	
Yes	27/115	1.34 (0.82-2.19)	0.15
Diabetes		· · · · ·	
No	87/447	1.0	
Yes	57/39	0.66 (0.25-1.72)	0.39
Hypertension			
Ńo	61/301	1.0	
Yes	31/185	0.83 (0.51-1.32)	0.42
Stroke			
No	88/461	1.0	
Yes	4/25	0.84 (0.28-2.46)	0.54
Lung disease			
No	68/340	1.0	
Yes	24/146	0.82 (0.49-1.36)	0.44
Symptoms			
Depressed mood*			
None to mild	84/499	1.0	
Moderate to severe	18/29	3.68 (1.96-6.93)	0.001
Fatigue [†]			
None to mild	32/327	1.0	
Moderate to severe	70/192	3.72 (2.36-5.87)	0.001
Opioid dose, range	0-1,000	. ,	
MEDD, mean (SĎ)	6.05 (47.25)	1.02 (1.01-1.03)	0.001
		. ,	

CANCER PAIN AND ANALGESIA

- Opioids are the cornerstone of treatment of cancerrelated pain
- Huge interindividual variability in opioid dose
- Active metabolites of morphine can accumulate and result in opioid-induced neurotoxicity
- Repeated administration leads to:
 - Opioid dose escalation
 - Reduced analgesia
 - Need for a change in opioid analgesic

MORPHINE CONSUMPTION

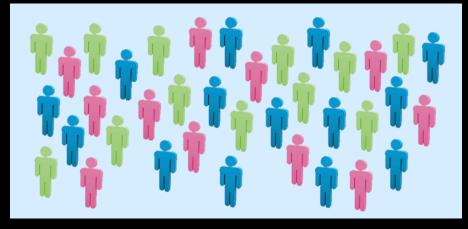
Population	Candidate Genes	Outcome	Results
Cancer patients in pain tx (n. 207) ¹	OPRM1-118 A/G 172 G/T IVS2+31+IVS2+691	Morphine consumption and serum concentration	GC subjects show higher morphine dose with higher serum concentration
Cancer patients in pain tx (n. 207) ²	COMT Val 158 Met	Morphine consumption	Val allele needs more morphine
Cancer patients in pain tx (n. 207) ³	COMT and OPRM1	Morphine consumption	Val allele needs more morphine COMT Met and OPRM1 A combinantion requires lowest morphine for achieving pain relief

¹Klepstad P et al. Acta Anaesthesiol Scand 2004; 1232-9.
²RakvagTT et al. Pain 2005; 116: 73-8.
³Reyes-Gibby CC et al. Cancer Epidemiol Biomarker Prev 2007; 16: 2745-51.

ANALGESIA

Population	Candidate Genes	Outcome	Results
137 cancer patients 77 with metastases ¹	ATP-binding cassette B1 (ABCB1)/ multiple drug resistance 1 (MDR1)	Verbal Rating Scale (5 point Likert scale) and Numeric Rating Scale (0-10)	Pain relief significantly associated with ABCB1/MDR1. Combination of C/C of ABCB1/MDR1 and g/G of OPRM1 show lower response to morphine
140 lung cancer patients²	TNF-α 308 G/A; IL6-174G/C; IL8-251T/A	Morphine equivalent daily dose	IL6-174C/C genotypes required 4.7 times higher dose of opioids for pain relief [OR: 4.7 (95% Cl, 1.2- 15.0)] relative to GG and GC genotypes

¹Campa D et al. Clin Pharmacol Ther 2008; 83: 559-66. ²Reyes-Gibby CC et al. Lancet Oncol. 2008; 9: 777-85.

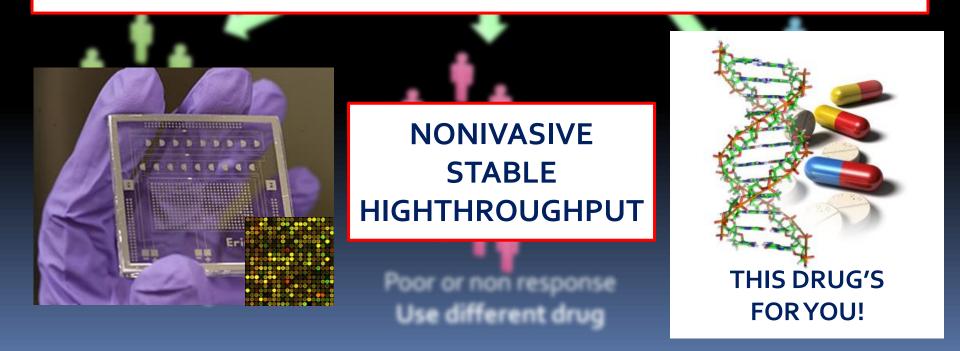

ANALGESIA

Population	Candidate Genes	Outcome	Results
70 patients with gastric cancer admitted for gastrectomy ¹	Cytocrome P450 2D6 (CYP2D6)	Tramadol consumption (2, 4, 24 and 48 h), pain VAS	Consumption of tramadol in group without CYP2D6*10 allele is higher than other groups at 4, 24, and 48 h post-surgery. No difference in pain intensity
251 cancer patients ²	GTP cyclohydrolase 1	Interval between cancer diagnosis and opioid therapy initiation	Homozigotes had longer interval (78 ± 65,2 mo) than in hetrozygotes (37 ± 46.5 mo)

¹Wang et al 2004. ²Lotsch J et al. Pain. 2010 ; 148: 103-6.

GERM-LINE (INHERITED) GENETIC VARIATIONS

PATIENTS WITH SAME DIAGNOSIS



Good response to tested drug

Poor or non response Use different drug Increased toxicity risk Decrease dose or use different drug DATIENTS WITH CAME DIAGNOSIS

PHARMACOGENETICS THE ASSOCIATION BETWEEN HERITABLE FUNCTIONAL VARIANTS (GENOTYPE) WITH OUTCOME OF THERAPY (PHENOTYPE)

Conclusion

Although several decades of experience and research have not changed the consensus that opioid-based pharmacotherapy is the mainstay approach for the longterm treatment of chronic pain in populations with active cancer, there have been striking changes in the clinical approach to this problem. With analgesic strategies integrated into a palliative plan of care, there is increasing hope that patients can experience cancer with a minimum of suffering. Nonetheless, the treatments used have very little supporting evidence and there continues to be a pressing need for more research to provide comparative and long-term data pertinent to current treatments and novel treatment strategies for refractory conditions. Efforts to bring cost-effective strategies to resource-poor areas of the world should have equal priority.

Conclusion

Advances in therapy of pain have been slow, but better trial design will address this producing, it is hoped, safer, and more effective drugs in the near future.

Power I. Br J Anaesth 2011; 107: 19–24.