Attualità nella terapia integrata locoregionale delle neoplasie delle vie aeree digestive superiori Taranto 12-14 gennaio 2012

Attualità in Oncologia Medica

La gestione della tossicità

Marco Merlano ASO S. Croce e Carle

Chemoradiation significantly increases acute toxicity

Cooper JS, et al. N Engl J Med 2004;350:1937–1944

Adelstein DJ et al; J. Clin. Oncol. 2003;21:92-98

The Intergroup trial	Standard radiotherapy	Standard radiotherapy + cisplatin 100mg/m ² q 3 wks	
All grade III-V toxicities	50%*	90%*	* = P<0.0001
Toxic deaths	2%	4.5%	

Chemoradiation: percentage of treatment-related deaths after primary treatment

Management of toxicity

"Impact of the treating institution on the survival of patients with HNC treated with concomitant alternating chemotherapy and radiotherapy"

Benasso M et al: Eur J Cancer 2003;39:1895-1898

"Impact of the treating institution on the survival of patients with HNC treated with concomitant alternating chemotherapy and radiotherapy" Benasso M et al: Eur J Cancer 2003;39:1895-1898

...and in the daily clinical practice?

Adverse Events Associated with concurrent chemoradiation therapy in patients with head and neck cancer

Givens DJ, Karnell LH, Gupta AK et al Arch Otolaryngol Head Neck Surg 2009;135:1209-17

104 pts	
treated between	2/2000 and 3/2007
< 65 yo 83.7%	
≥ 65 yo 16.4%	

Oropharynx	69.2%		
Larynx	16.3%		
Hypopharynx	3.8%		
Stage IV	75.0%		
Stage III	22.1%		

IMRT 2D	85.6% 14.4%
CisPT q 21	60.6%
CisPT weekly	33.7%
Other	5.8%

Adverse Events Associated with concurrent chemoradiation therapy in patients with head and neck cancer

Givens DJ, Karnell LH, Gupta AK et al Arch Otolaryngol Head Neck Surg 2009;135:1209-17

any mucositis	92,3
requiring hospit.	9,6
any hematologic	59,6
moist desquamatio	28,8
any treat delays	46,2
dehydration or mal	26
pneumonia	25
treat.t rel. Deaths	1,9

317 pts treated between 11/1997 and 11/2008	Adjuvant CRT NA-CT -> CRT	6.9% 10.1%
< 65 yo 71%	Bio-RT	8.2%
≥ 65 yo 29%	Altern. CRT	74.8%
Oropharynx 33.4%		
Larynx 19.9%		
Hypopharynx 24.6%	HPV-pos	14%
Oral cavity 12.6%	HPV-neg	84%
	EGFR 3+	61.8%
T 3-4 68.1%	FGFR 0-2+	38.2%
N 2-3 74.5%		33.270

Safety	Y	0	All pts	P-value
Stomatitis G3	87 (38.8%)	31 (33.3%)	118 (37.2%)	0.356 a
Stomatitis G4	57 (25.4%)	30 (32.3%)	87 (27.4%)	0.216 a
Diarrhoea >G1	7 (3.1%)	4 (4.3%)	11 (3.5%)	0.736 b
Thrombosis	4 (1.8%)	2 (2.2%)	6 (1.9%)	0.567 b
B.W. Loss	7.61% (SD±5.56)	6.66 (SD±4.51)		0.12 c
TPN	71 (31.7%)	38 (40.9%)	109 (34.4%)	0.11 a
PN/EN	8 (3.6%)	1 (1.1%)	9 (2.8%)	0.291 b
Neutropenia G3	45 (20.1%)	21 (22.56%)	66 (20.8%)	0.617 a
Neutropenia G4	23 (10.3%)	9 (9.7%)	32 (10.1%)	0.862 a
Anemia G3	29 (12.9%)	18 (19.4%)	47 (14.8%)	0.143a
Anemia G4	1 (0.4%)	0 (0%)	1 (0.3%)	0.707 b
Infections	35 (15.6%)	26 (28.0%)	61 (19.2%)	0.011 a
Pneumonia	5 (2.2%)	10 (10.8%)	15 (4.7%)	0.002 b
On-treatment deaths	8 (3.6%)	6 (6.5%)	14 (4.4%)	0.366 b

Y,young (age<65 years); O, old (age≥65 years); TPN, total parenteral nutrition; PN/EN,

parenteral and enteral nutrition.

a. Chi square Test; b. Fisher's Test; c. Student's T test

Toxic Death.

Cause	All pts	Y	0	
Bleeding	1	1	0	
Sepsis	2	1	1	
Pneumonia	7	3	4	p = NS
Sudden Death	4	3	1	

Y,young (age<65 years); O, old (age≥65 years)

Treatments Compliance.

Parameter	Y	0	All pts	P-value
Treatment delays ≥ 1 week	66 (29.5%)	21 (22.6%)	87 (27.4%)	0.21 a
Not completed treatment	9 (4.0%)	6 (6.5%)	15 (4.7%)	0.38 b
Not completed treatment (including on treatment deaths)	17 (7.6%)	12 (12.9%)	29 (9.1%)	0.20 a

Good treatment compliance: Yong = 58.9% Elderly = 61 % Overall = 58.8%

Bonner 20

Adverse Event	Radiotherapy A	lone (N = 212)	Radiotherapy plus	Cetuximab (N=208)	PV	'alue†
	All Grades	Grades 3-5	All Grades	Grades 3-5	All Grades	Grades 3-
		perce	ent of patients			
Mucositis	94	52	93	56	0.84	0.44
Acneiform rash	10	1	87	17	< 0.001	< 0.001
Radiation dermatitis	90	18	86	23	0.24	0.27
Weight loss	72	7	84	11	0.005	0.12
Xerostomia	71	3	72	5	0.83	0.32
Dysphagia	63	30	65	26	0.68	0.45
Asthenia -	49	5	56	4	0.17	0.64
Nausea	37	2	49	2	0.02	1.00
Constipation	30	5	35	5	0.35	1.00
Taste perversion	28	0	29	0	0.83	
Vomiting	23	4	29	2	0.18	0.42
Pain	28	7	28	6	1.00	0.84
Anorexia	23	2	27	2	0.26	1.00
Fever	13	1	26	1	0.001	1.00
Pharyngitis	19	4	26	3	0.10	0.80
Dehydration	19	8	25	6	0.16	0.57
Oral candidiasis	22	0	20	0	0.63	
Coughing	19	0	20	<1	1.00	0.50
Voice alteration	22	0	19	2	0.47	0.06
Diarrhea	13	1	19	2	0.11	0.50
Headache	8	<1	19	<1	0.001	1.00
Pruritus	4	0	16	0	< 0.001	
Infusion reaction	2	0	15	3	< 0.001	0.01
Insomnia	14	0	15	0	0.89	
Dyspepsia	9	1	14	0	0.13	0.50
Increased sputum	15	1	13	<1	0.78	0.62
Infection	9	1	13	1	0.28	1.00
Anxiety	9	1	11	<1	0.75	1.00
Chills	5	0	11	0	0.03	
Anemia	13	6	3	1	< 0.001	0.006

* Adverse events that occurred in at least 10 percent of patients in either treatment group are shown, regardless of cause. \uparrow P values were determined with the use of Fisher's exact test.

Adverse Event	Radiotherapy Alone (N=212)		Radiotherapy plus Cetuximab (N=208)		P Value [†]	
	All Grades	Grades 3–5	All Grades	Grades 3–5	All Grades	Grades 3–5
		perce	ent of patients			
Mucositis	94	52	93	56	0.84	0.44
Acneiform rash	10	1	87	17	<0.001	<0.001
Radiation dermatitis	90	18	86	23	0.24	0.27

Budach W NEJM 2007

International Journal of Radiation Oncology*Biology*Physics Volume 69, Issue 2, 1 October 2007, Pages 638–639

Radiation Unrology

Letters to the Editor

Ultrathin Hydrocolloid Dressing in Skin Damaged From Alternating Radiotherapy and Chemotherapy Plus Cetuximab in Advanced Head and Neck Cancer (G.O.N.O. AlteRCC Italian Trial): In Regard to Macmillan *et al.* (*Int J Radiat Oncol Biol Phys* 2007;68:864–872)

Elvio G. Russi, M.D.

Gruppo Oncologico Nord Ovest, Department of Radiotherapy, General Hospital "S. Croce e Carle", Cuneo, Italy

Marco C. Merlano, M.D.

Gruppo Oncologico Nord Ovest, Department of Oncology, General Hospital "S. Croce e Carle", Cuneo, Italy

Alberto Comino, M.D.

Department of Pathologic Anatomy, General Hospital "S. Croce e Carle", Cuneo, Italy

Gianmauro Numico, M.D.

Gruppo Oncologico Nord Ovest, Department of Radiotherapy, General Hospital "S. Croce e Carle", Cuneo, Italy

Available online 14 September 2007

	Radiotherapy	r (N=212)		Radiotherapy plus cetuximab (N=208)				
	All grades	Grade 3/4	Grade 4	All grades	Grade 3/4	Grade 4		
Skin reaction*	200 (94.3%)	45 (21·2%)	3 (1·4%)	204 (98.1%)	73 (35·1%)	4 (1.9%)		
Mucositis/stomatitis†	199 (93.9%)	110 (51.9%)	9 (4·2%)	194 (93·3%)	116 (55.8%)	13 (6.3%)		
Dysphagia	134 (63.2%)	63 (29.7%)	3 (1.4%)	136 (65.4%)	54 (26.0%)	1 (0.5%)		
Xerostomia‡	150 (70.8%)	6 (2.8%)	0 (0%)	150 (72·1%)	10 (4.8%)	0 (0%)		
Acneiform rash§	21 (9·9%)	3 (1.4%)	0 (0%)	174 (83.7%)	35(16.8%)	1 (0.5%)		
Infusion reaction¶	4 (1.9%)	0 (0%)	0 (0%)	32 (15·4%)	6 (2.9%)	2 (1.0%)		

*Skin reaction includes all Coding Symbols for a Thesaurus of Adverse Reaction Terms (COSTART) terms in the Skin and Appendages body system. †Mucositis/stomatitis includes COSTART terms aphthous stomatitis; gingivitis; glossitis; mouth ulceration; mucous membrane disorder; stomatitis; and ulcerative stomatitis. ‡Xerostomia is COSTART term dry mouth. §Acneiform rash includes COSTART terms acne; rash; maculopapular rash; exfoliative dermatitis. ¶Infusion reaction includes COSTART terms allergic reaction; anaphylactoid reaction; and/or fever; chills; or dyspnoea on the first day of treatment. ||Statistically significant (p<0.05) difference between the treatment groups; Fisher's exact test.

Table 2: Most common adverse events

Bonner 2010

Radiation induced skin toxicity Pathogenesis:

Ionising Radiation damages mitotic ability of clonogenic cells within the basal layer, thus preventing repopulation and weakening skin integrity.

Moist desquamation occurs when basal layer becomes unable to repopulate in time to replace the damage tissue.

This effect is evident at a cumulative dose of 20-25 Gy and the maximum depletion is observed at 50 Gy.

Factors influencing severity, onset and duration of skin reactions¹

Areas of the body containing skinfolds (such as the neck)

Intrinsic factors General skin condition (photoaging) Nutritional status Age (chronoaging) Comorbid disease Ethnicity Extrinsic factors Dose Energy Fractionation regimen Combination with chemotherapy Doxorubicin, MTX, 5Fu, Hyd, BLM, Taxanes (i.e. those able to induce radiation recall)

1) Wells M, McBride S: "Radiation skin reactions" in "Supportive care in radiotherapy" Faithfull S and Wells M Eds, pag 135-160; Churchill Livingstone, Edinburgh. Elsevier Science Ltd, 2003

EGFr activation is the first response to skin injury:

It is involved in wound healing of the skin

•Acute disruption of permeability barrier stimulate epidermal proliferation via amphiregulin EGFr activation

•Sustained EGFr activation is a well established event in response to UVB exposure, and plays a crucial role in UVB induced epidermal hyperplasia

EGFr plays a role in repair of radiation induced skin damage

"There is clear evidence that EGFR expression increases after RT, and it possibly plays a role as a mechanism for repopulating irradiated areas"

Peter RU et al: Increased expression of EGFR in human epidermal keratynocites after exposure To iomizing radiation. Radiat Res 1993;136:65-70

Application of specific inhibitor of EGFr ligand greatly retards re-epithelization by inhibition of keratinocyte migration

BLOCKADE OF EGFR SIGNALING DOES NOT INDUCE KERATINOCYTE CELL DEATH, RATHER, IT ENHANCES SUSCEPTIBILITY TO CELL DEATH INDUCTION

Exacerbates effects of other factors: Microtrauma, UVB exposition, radiotherapy

Pastore S et al: The epidermal growth factor receptor system in skin Repair and inflammation. J. Investigative Dermatol. 2008;128:1365-74 So, it makes sense that EGFr inhibitors can exacerbate radiation-induced skin toxicity interfering with its repair

But, up to which extent?

Original article

High rate of severe radiation dermatitis during radiation therapy with concurrent cetuximab in head and neck cancer: Results of a survey in EORTC institutes

Christian Giro^a, Bernhard Berger^b, Edwin Bölke^a, I. Frank Ciernik^c, Frederic Duprez^d, Laura Locati^e, Sophie Maillard^f, Mahmut Ozsahin^g, Raphael Pfeffer^h, A. Gerry Robertsonⁱ, Johannes A. Langendijk^j, Wilfried Budach^{a,*}

Department of Radiation Oncology, University Hospital Diaseldorf, Germany
Department of Radiation Oncology, University Hospital Diaseldorf, Germany
Department of Radiation Oncology, University Hospital Gen, Belgium
Organization (Medial Incology, Heat and Next Unit, Fondatone IRCCS Istituto Nazionale Tumori, Milan, Italy
Department of Radiation Oncology, Iniversity Hospital Gen, Belgium
Department of Radiation Oncology, Iniversity Hospital Gen, Belgium
Department of Radiation Oncology, Iniversity Hospital Context, France
Department of Radiation Oncology, Iniversity Hospital Context, Switzerland
Department of Radiation Oncology, Iniversity Hospital Context, Switzerland
Department of Radiation Oncology, University Hospital Context, Switzerland
Department of Radiation Oncology, University Medical Center Graningen, The Netherlands

Grade 3/4 incidence: ≈ 49%

Radiation + cetuximab induced skin toxicity

The lowest total dose at which G 3/4 reactions were observed, were 16 and 20 Gy respectively. The steepest incline was seen between 46 and 54 Gy.

Radiation induced skin toxicity

This effect is evident at a cumulative dose of 20-25 Gy and the maximum depletion is observed at 50 Gy.

Enhanced toxicity with concurrent cetuximab and radiotherapy In head and neck cancer David I. Prior, Sandro V. Porceddu, Bryan H. Burmeister et al **Dept Radiation Oncology Princess Alexandra Hospital** Australia

Radiotherapy Oncology 2008

13 pts: 77% G 3/4 skin reactions

All received standard fractionation RT

6 pts > 70 y.o. 13 unsuitable for CT/RT

AGE 12 pts skin actinic damage GENERAL SKIN CONDITIONS **CO-MORBIDITIES**

Factors influencing severity, onset and duration of skin reactions¹

Areas of the body containing skinfolds (such as head and neck)

Intrinsic factors General skin condition (photoaging) Nutritional status Age (chronoaging) Comorbid disease Ethnicity **Extrinsic factors** Dose Energy Fractionation regimen Combination with chemotherapy Doxorubicin, MTX, 5Fu, Hyd, BLM, Taxanes (i.e. those able to induce radiation recall)

1) Wells M, McBride S: "Radiation skin reactions" in "Supportive care in radiotherapy" Faithfull S and Wells M Eds, pag 135-160; Churchill Livingstone, Edinburgh. Elsevier Science Ltd, 2003

Increased Risk of High-Grade Dermatologic Toxicities With Radiation Plus Epidermal Growth Factor Receptor Inhibitor Therapy

Ajay Tejwani, MD¹, Shenhong Wu, MD², Yuxia Jia, MD², Mark Agulnik, MD⁴, Laura Millender, MD³, and Mario E. Lacouture, MD⁵

Cancer 2009

site	G 3/4 radio dermatitis	Tot n. of pts	cetuximab	erlotinib	gefitinib	panitumu mab
HNC	98	616	569	29	10	8
Non HNC	0	309	261	48	0	0

Factors influencing severity, onset and duration of skin reactions¹

Areas of the body containing skinfolds (such as the neck)

Intrinsic factors General skin condition (photoaging) Nutritional status Age (chronoaging) Comorbid disease Ethnicity **Extrinsic factors** Dose Energy Fractionation regimen Combination with chemotherapy Doxorubicin, MTX, 5Fu, Hyd, BLM, Taxanes (i.e. those able to induce radiation recall)

1) Wells M, McBride S: "Radiation skin reactions" in "Supportive care in radiotherapy" Faithfull S and Wells M Eds, pag 135-160; Churchill Livingstone, Edinburgh. Elsevier Science Ltd, 2003

Original article

High rate of severe radiation dermatitis during radiation therapy with concurrent cetuximab in head and neck cancer: Results of a survey in EORTC institutes

Christian Giro^a, Bernhard Berger^b, Edwin Bölke^a, I. Frank Ciernik^c, Frederic Duprez^d, Laura Locati^e, Sophie Maillard^f, Mahmut Ozsahin^g, Raphael Pfeffer^h, A. Gerry Robertsonⁱ, Johannes A. Langendijk^j, Wilfried Budach^{a,*}

¹ Department of Radiation Oncology, University Hospital Disseldorf, Germany ⁵ Department of Radiation Oncology, University Hospital Tubingen, Germany ⁵ Department of Radiation Oncology, University Hospital Cubingen, Germany ⁶ Department of Radiation Oncology, Head and Neck Unii, Fondariane RECS bituub Nazionale Tumori, Milan, Italy ¹ Department of Radiation Oncology, Interity Hospital Cubin, Fondariane RECS bituub Nazionale Tumori, Milan, Italy ¹ Department of Radiation Oncology, University Hospital Lausanne, Switzerland ¹ Department of Radiation Oncology, University Hospital Lausanne, Switzerland ¹ Department of Radiation Oncology, University Hospital Lausanne, Switzerland ¹ Department of Radiation Oncology, University Hospital Lausanne, Switzerland ¹ Department of Radiation Oncology, University Hospital Switzerland ¹ Department of Radiation Oncology, University Hospital North Clasgov, UK ¹ Department of Radiation Oncology, University Hospital Cuerter Grontingen, The Netherlands ¹ Department of Radiation Oncology, University Hospital Cuerter Grontingen, The Netherlands ¹ Department of Radiation Oncology, University Hospital Netherlands ¹ Department of Radiation Oncology, University Hospital Netherlands

> Merlano et al tested cetuximab in combination with alternating chemoradiation in HNSCC in a phase II trial... Eighteen of twenty patients developed a grade III/IV radiation dermatitis during the second course of radiotherapy (22-40 Gy). ...**indicates that chemotherapy may further aggravate radiation induced skin toxicity.**

original article

Cisplatin-based chemoradiation plus cetuximab in locally advanced head and neck cancer: a phase II clinical study

M. Merlano^{1*}, E. Russi², M. Benasso³, R. Corvò⁴, I. Colantonio¹, R. Vigna-Taglianti², V. Vigo³, A. Bacigalupo⁴, G. Numico⁵, N. Crosetto^{1†}, M. Gasco^{1‡}, C. Lo Nigro^{1‡}, R. Vitiello⁶, S. Violante⁷ & O. Garrone¹

Departments of ¹Medical Oncology; ²Radiation Therapy, S. Croce General Hospital, Cuneo; ³Department of Medical Oncology, La Spezia; General Hospital, La Spezia; ⁴Department of Radiation Therapy, National Institute for Cancer Research, Genoa; ⁵Department of Medical Oncology, Aosta General Hospital, Aosta; ⁶Department of Otorhinolaryngology; ⁷Clinical Trials Office, Department of Medical Oncology, S. Croce General Hospital, Cuneo, Italy

Received 2 December 2009; revised 11 March 2010; revised 7 May 2010; accepted 21 June 2010

Table 2. Treatment responses and toxicities

Response	45 evaluable patie	nts				
Objective response rate, %	91.1%					
CR, n (%)	32 (71.1)					
PR, n (%)	9 (20)					
Failures, n (%)	4 (8.9)					
Grade	0	1	2	3	4	Total
Relative frequencies of observed acute toxic eff	ects					
Haematological toxic effects, n (%)						
Leukopenia	12 (27)	1 (2)	14 (31)	17 (38)	1 (2)	45
Neutropenia	12 (27)	1 (2)	14 (31)	15 (33)	3 (7)	45
Grade 3-4 with fever				8	8	
Anaemia	13 (29)	12 (27)	16 (35)	4 (9)	0	45
Thrombocytopenia	26 (58)	5 (11)	7 (16)	6 (13)	1 (2)	45
Non-haematological toxic effects, n (%)						
Stomatitis	2 (4)	3 (7)	11 (24)	13 (29)	16 (36)	45
Dysphagia	38 (84)	0	4 (9)	3 (7)	0	45
Radiodermatitis	0	1 (2)	11 (24)	33 (74)	0	45
C225-induced rash	37 (82)	3 (7)	2 (4)	3 (7)	0	45
Diarrhoea	34 (76)	4 (9)	3 (7)	4 (9)	0	45
Alopecia	30 (67)	10 (22)	4 (9)	1 (2)	0	45
Peripheral neuropathy	44 (98)	1 (2)	0	0	0	45
Fatigue	6 (13)	18 (40)	20 (44)	1 (2)	0	45
Worse non-haematological toxicity				Stomatitis		
Worse overall toxicity				Stomatitis		

METHODS TREATMENT

RAPIDLY ALTERNATING CT/RT⁽¹⁾ COMBINED WITH C-mab

Weeks	<u>1</u>	2	3	4	5	6	7	8	9	10
Chemotherapy	1111	1			- 1111			1111	1	
Radiotherapy		111	11 11	111 -	1	1111	11111	i	111	*****
C-mab	ĵ	ĵ	ĵ	ĵ	ĵ.		ĵ	Ĵ	- ĵ	- Ĵ

Chemotherapy: cisplatin, 20 mg/m²/die, days 1 to 5; fluorouracil bolus i.v., 200 mg/m²/die, days 1 to 5 Radiation: 200 cGy/die, 1 fraction per day, 5 fractions per week C-mab: day 1 of each treatment week; 400mg/m² followed by 250mg/m² weekly during the whole treatment

(1): Merlano M. et al, J.Natl.Cancer Inst. 1996

MAJOR TOXICITIES - LOCAL SKIN TOXICITY

At 36 Gy

At 52 Gy

7 wks after Treatment end

1 wk after Treatment end

CONCLUSIONS

- The combination of c-mab and alternating CT/RT adds an UNEXPECTED SKIN TOXICITY IN THE IRRADIATED FIELD (LOCAL SKIN TOXICITY) which is different from the c-mab induced skin rush
- THE LOCAL SKIN TOXICITY COMPLETELY RECOVERS AT THE END OF THE TREATMENT, CAN BE EFFICACIOUSLY MANAGED AND DOES NOT SIGNIFICANTLY IMPACT WITH TREATMENT FEASIBILITY⁽¹⁾
- A possible negative interaction among RADIATION, FLUOROURACIL AND C-mab AT SKIN LEVEL, could account for the observed local skin toxicity.
- ACTIVITY: the response rate achieved, overcomes the statistical hypothesis (32 instead of 26 CRs required).
 - 1) Russi EG et al: Ultrathin hydrocolloid dressing in skin damaged from Alternating Radiotherapy and Chemotherapy plus Cetuximab in advanced head and neck cancer (G.O.N.O. AlteRCC italian trial). Int. J. Radiat. Oncol. Biol. Phys.2007 [letter]

Factors influencing severity, onset and duration of skin reactions¹

Areas of the body containing skinfolds (such as the neck)

Intrinsic factors General skin condition (photoaging) Nutritional status Age (chronoaging) Comorbid disease Ethnicity Extrinsic factors Dose Energy Fractionation regimen Combination with chemotherapy Doxorubicin, MTX, 5Fu, Hyd, BLM, Taxanes (i.e. those able to induce radiation recall)

1) Wells M, McBride S: "Radiation skin reactions" in "Supportive care in radiotherapy" Faithfull S and Wells M Eds, pag 135-160; Churchill Livingstone, Edinburgh. Elsevier Science Ltd, 2003

CT- CAE v3.0 Radiotherapy and chemoradiation skin toxicity grading

3	4				
Moist desquamation	Skin necrosis or				
other than skin folds and	ulceration of <u>full</u>				
creases; <u>bleeding</u>	thickness dermis;				
induced by minor	<u>spontaneous</u>				
trauma or abrasion	bleeding from involved				
	site				

A completely healed skin without disfiguring scars in the damaged area.

A completely healed skin without disfiguring scars in the damaged area.

Bölke, Budach et al. Strahlenther Onkol 2008;184:105–10

SHOCKING ASPECT AND G 4 SKIN TOXICITY ARE NOT THE SAME Stratum corneum
Stratum lucidum
Stratum granulosum
Stratum spinosum
Stratum basale

Normal epidermis

Histopathology

Loss of stratum corneum Thinning of the epidermis Interruption of the epidermis for limited necrosis of the epidermis

Blood vessels are telangiectatic

Traditional radio-dermatitis

inflammatory licinfiltration of the suberident of annihocytic infiltration of the suberident of the suberi

Cellules apoptiques

Barrier function impairment! Fluids loss!

(Albanell, 2002)

MANAGEMENT Holy Cross Gen Hosp experience

Prevent xerosis and continuous rubbing

- Since first radiotherapy fractions
 - reduce skin trauma, protecting the neck from continuous rubbing with soft linen or cotton
 - use non-perfumed emollients on the xerotic intact skin

When crusty exudates appear

• Debridement using hydrogel,

Support Care Cancer DOI 10.1007/s00520-011-1324-4

ORIGINAL ARTICLE

The effects on pain and activity of daily living caused by crusted exudation in patients with head and neck cancer treated with cetuximab and radiotherapy

Elvio G. Russi · Marco C. Merlano · Gianmauro Numico · Renzo Corvò · Marco Benasso · Riccardo Vigna-Taglianti · Antonella Melano · Nerina Denaro · Stefano Pergolizzi · Ida Colantonio · Francesco Lucio · Rodolfo Brizio · Umberto Ricardi

Received: 12 April 2011 / Accepted: 1 November 2011 © Springer-Verlag 2011

When crusty exudates appear

...protect injured cutis with Hydrocolloid or Hydrofibers

Protect injured cutis with Hydrocolloid or Hydrofibers

Medications with advanced dressings

Hydrocolloid

- carboxymethylcellulose in selfadhesive, biocompatible and hydratable polymeric matrix
- Hydrofibers
 - carboxymethylcellulose

The transformation in gel of carboxymethylcellulose reduces the rubbing and the pain from cutaneous fold movements in the neck.

Avoid the use of patches

We reckon that this AE is manageable, despite its shocking aspect. Therefore, it should not be a treatment-limiting AE and therapies should be continued without interruption.

Thank you

