

RADIOTERAPIA A INTENSITÀ MODULATA CON SIMULTANEOUS INTEGRATED BOOST (IMRT-SIB) NEL TRATTAMENTO DELLE NEOPLASIE DEL DISTRETTO TESTA-COLLO

Dr. A. Errico

U.O.C. Radioterapia Oncologica Ospedale «R. Dimiccoli»- Barletta

TERAPIA DELLE NEOPLASIE H&N

- Radioterapia e Chirurgia: gold standard terapeutico in alternativa o in sequenza
- * In considerazione dell'alta percentuale di recidiva locoregionale (50%), la ricerca si è spinta in nuove direzioni:

NUOVE TECNICHE RT

→ DOSE ESCALATION

CHEMIOTERAPIA CONCOMITANTE

FRAZIONAMENTI

FRAZIONAMENTI ALTERATI

Regime	D totale (Gy)	Tempo (gg)	Dose/fx (Gy)							
Iperfrazionamento										
RTOG 9003	81.6	47.6	1.2 bid							
Boost concomitante - Rt accelerata										
RTOG 9003	72	42	1.8 + 1.2 boost							
CHART	54	12	1.5							
HA-RT con	67.2	43.4	1.6 bid							
split										
RT- DAHANCA	66-68	42	2							
RT-GORTEC	62-64	22-23	2 bid							
AH-RT GCS	77.6	42	2 (start) - 1.4							
			bid							

Fu KK, IJROBP 2000 Dische S, R&O 1997 Overgaard J, Lancet Oncol 2005

Bourhis J, JCO 2006 Budach V, JCO 2005

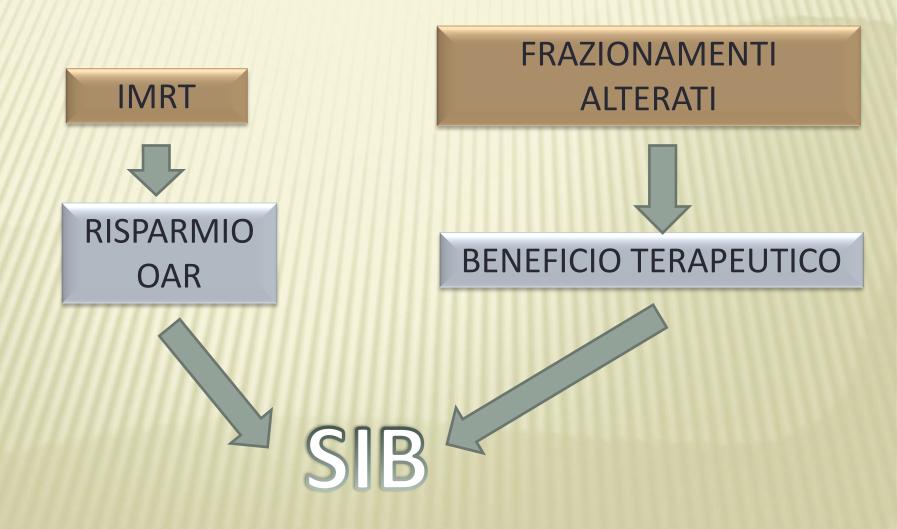
FRAZIONAMENTI ALTERATI: METANALISI

THE LANCET

The Lancet, <u>Volume 368, Issue 9538</u>, Pages 843 - 854, 2 September 2006 doi:10.1016/S0140-6736(06)69121-6

This article can be found in the following collections: Oncology (Head & neck cancer)

Published Online: 17 August 2006


Hyperfractionated or accelerated radiotherapy in head and neck cancer: a metaanalysis

Prof Jean Bourhis MD a, Prof Jens Overgaard MD a, Hélène Audry MSc b, Prof Kian K Ang MD d, Prof Michele Saunders MD a, Jacques Bernier MD f, Prof Jean-Claude

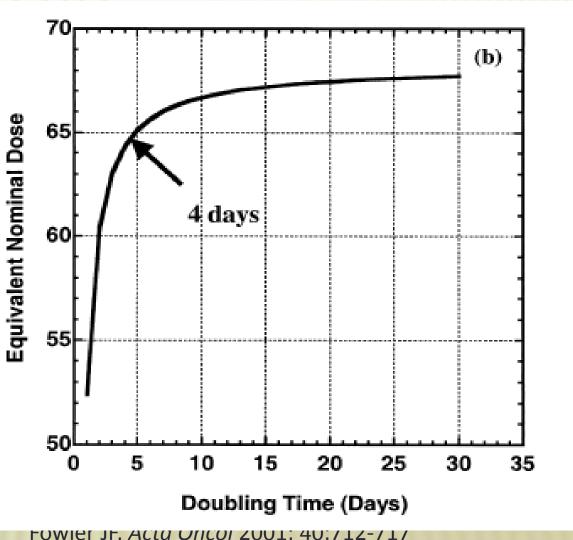
Altered fractionated radiotherapy improves survival in patients with head and neck squamous cell carcinoma.

Comparison of the different types of altered radiotherapy suggests that hyperfractionation has the greatest benefit

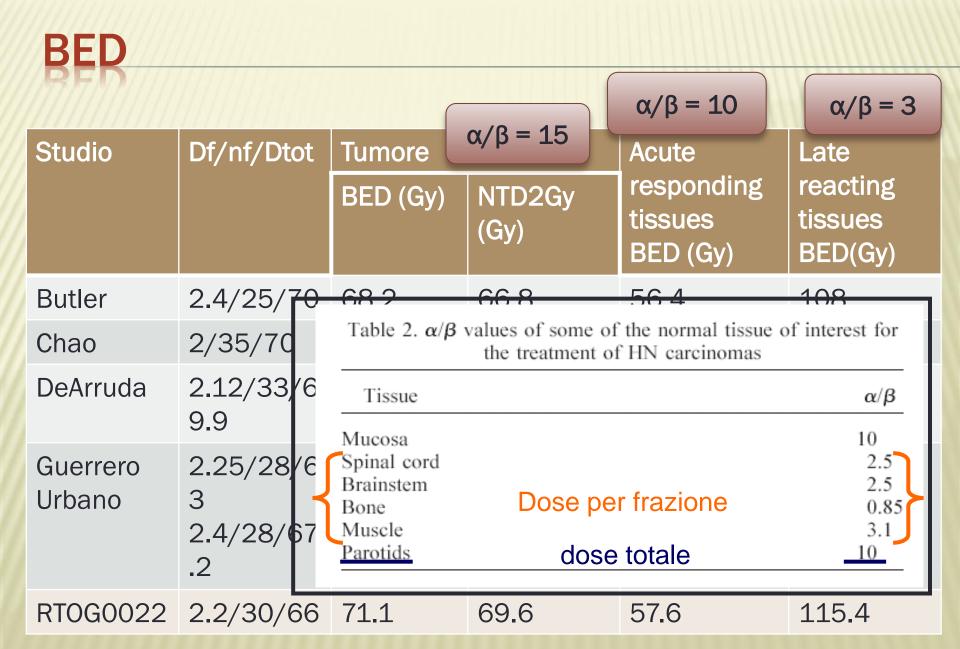
SIB: SIMULTANEOUS INTEGRATED BOOST

SIB: RAZIONALE RADIOBIOLOGICO

somministrazione simultanea di differenti livelli di dose ai diversi volumi target nell'ambito di una singola frazione


Volume (cc)	outside t	the target	(tumor	and nodes)	regions	at sp	pecified	dose !	level
		_		higher	-	-	•		

Dose level (cGy)	Conventional	Conventional with IMRT boost	Two-phase IMRT	Simultaneous integrated boost IMRT	% Difference between SIB IMRT and 2-phase IMRT
1,000	1,640	1,895	2,183	2,169	0.6
2,000	1,418	1,447	1,975	1,941	1.8
3,000	1,336	1,355	1,557	1,459	6.7
4,000	1,206	1,234	1,096	1,016	7.9
4,500	1,016	1,141	897	797	12.5
5,000	762	977	732	604	21.2
5,500	627	810	567	407	39.3
6,000	592	575	388	238	63.0
6,500	571	396	210	130	61.5
7,000	409	123	83	62	33.9


RIDUZIONE DELL'OTT

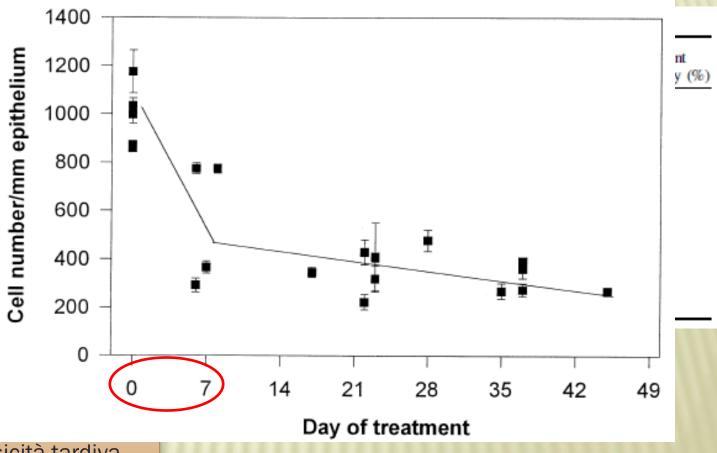
- * Aumento significtumorale mediartempo di raddop(Tpot) inferiori a t
- × Influenza su tossi

Tpot tumor

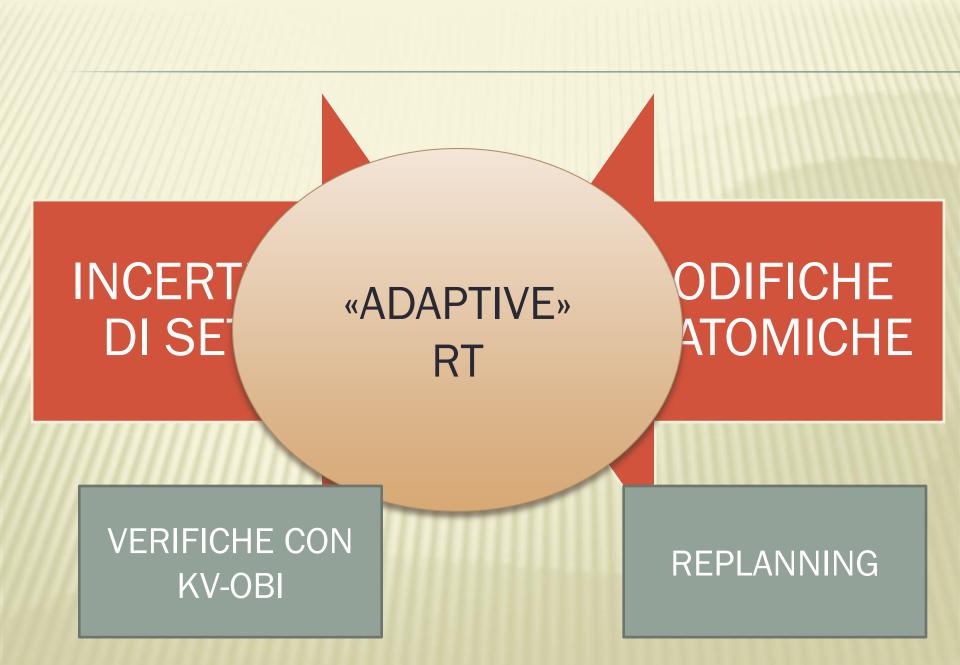
Maciejeski B, *IJROBP* 1989; 16:831-843

Orlandi E et al, Clin Rev Oncol Hematology, 2010; 73:111-125

RISULTATI


Lee et al. (36) Lee et al. (22) Kwong et al. (25) Wolden et al. (24)

Chao et al. (26) Lauve et al. (27)


de Arruda et al. (28) Studer et al. (29) Schwartz et al. (30) Lee et al. (31)

Boost concomit

- LRC2y → 54-
- Aumentata to
- Fino a 41% tossicità tardiva

Montejo MR, IJROBP 2011 Dorr et al, IJROBP, 2002

ERRORI DI POSIZIONAMENTO

OFFLINE PROTOCOL	Decrease in sytematic errors mm.	random errors mm.
De Boer et al.	1.6-2.1 1.1-1.2	1.6-1.4
Van Lin et al.	2.2-2.3 Q 0.8-1.4	1.5-1.9

On line correction provides the advantage of reducing both the systematic and random errors whereas an offline protocol can only reduce the systematic error

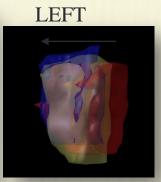
ON LINE P
R
0
т////
0
C
0

O'Daniel et al.	Use of IGRT reduce mean parotid dose in 91% of pts.	the parotid dose resulting from bone allignment is greater than the planned dose
Wang et al.	PTV margin reduction 5mm —⇒3mm	Traslational isocenter shift of 3mm—No on line correction increasing dose in brainstem and spinal cord (10Gy) Parotid gland (7.5-8.5 Gy)

MODIFICHE ANATOMICHE

Author	No. of Patients	Per-Treatment Imaging	Image Registration	Volume Analysis	Shape and Positiona Analysis
Barker et al (2004) ⁶	14	In-room CT-on-rail 3 times/wk; no iv contrast	Rigid	Reduction of: GTV: 1.8% per treatment day PGs: 0.6%/treatment day	GTV: COM displacement: 3.3 mm Casymmetric
GTV → ASYMMI (2008)51 AROTID GLAND -		contrast	nable	Reduction after 46 Gy: • GTV: 25 ± 15% • Homolat PG: 17 ± 7% • Heterolat PG: 5 ± 4%	PG: COM shift medially by 3.1 mm After 46 Gy: Lateral and inferior regions of homolat PG: medial and
	(3m	,		Homolat SMG: 20 ± 10% Heterolat SMG: 11 ± 7%	 posterior shift (3 mm) Homolat SMG: medial, cranial, and posterior shift (4 mm)
Castadot et al (2008)	10	CT scan at mean dose of 14, 25, 35, and 45 Gy; iv contrast		Reduction of GIV _T : 3.2%/treatment day GTV _N : 2.1%/treatment day Homolateral PG:	Homolat PG: medial shift of 3.4 mm CTV: lateral shift of
PERDITA DI	PESO	MEDIA: 7% (5-:	13%)	0.9%/treatment day Heterolat PG: 1.0%/treatment	1.3 mm • GTV _N : medial shift of 0.9 mm
		TI MIDOLLO - 5.6 mm (C6)		Low dose homolat CTV _N : 0.5%/ treatment day low dose heterolat CTV _N : 0.4%/ treatment day	Low dose homolat CTV _N : medial shift of 1.8 mm No shift for the heterolat PG and heterolat low dose CTV _N .
Castadot Sen	nin Rad	iat Oncol 2010	111111	Barker, IJROBP 2004	11111111

Robar IJROBP 2007


Geets, Radiother Oncol 2007

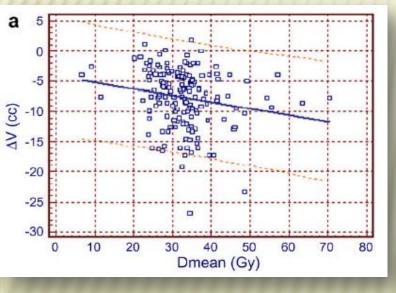
ART: modifiche anatomiche OAR

Red: day 1; Yellow: day 15; Blue: day 30

Contents lists available at ScienceDirect

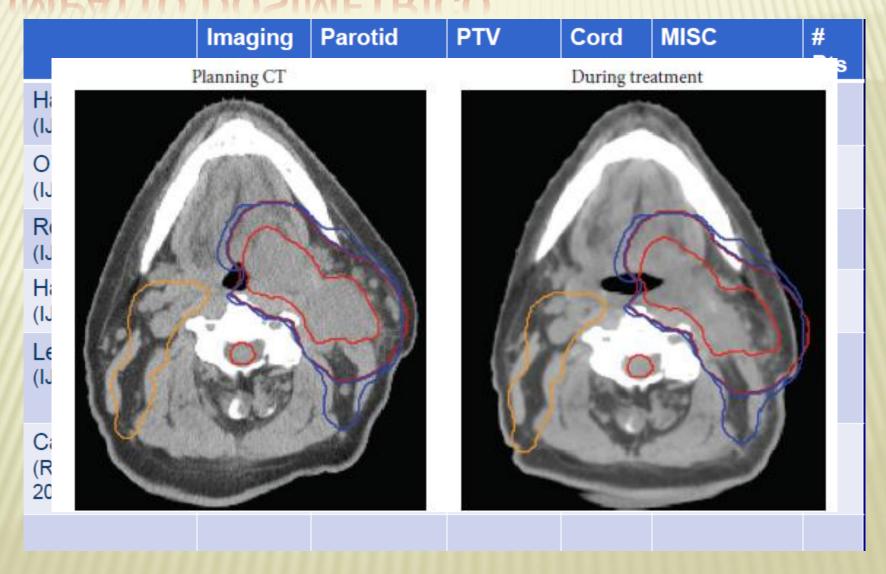
Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

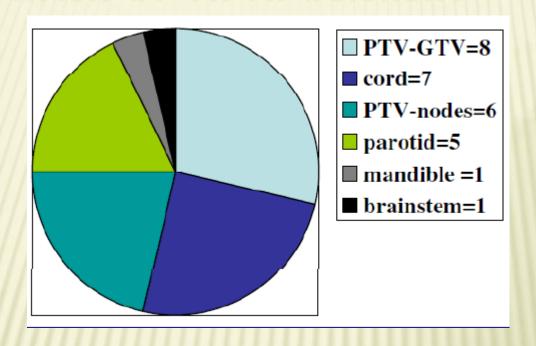


Original article

A two-variable linear model of parotid shrinkage during IMRT for head


Sara Broggi ^{a.}, Claudio Fiorino ^a, Italo Dell'Oca ^b, Nicola Dinapoli ^c, Marta Paiusco ^d, Alessandro Muraglia ^e, Eleonora Maggiulii ^{a,f}, Francesco Ricchetti ^e, Vincenzo Valentini ^c, Giuseppe Sanguineti ^e, Giovanni Mauro Cattaneo ^a, Nadia Di Muzio ^b, Riccardo Calandrino ^a

(4 Istituti, 187 parotidi)



IMPATTO DOSIMETRICO

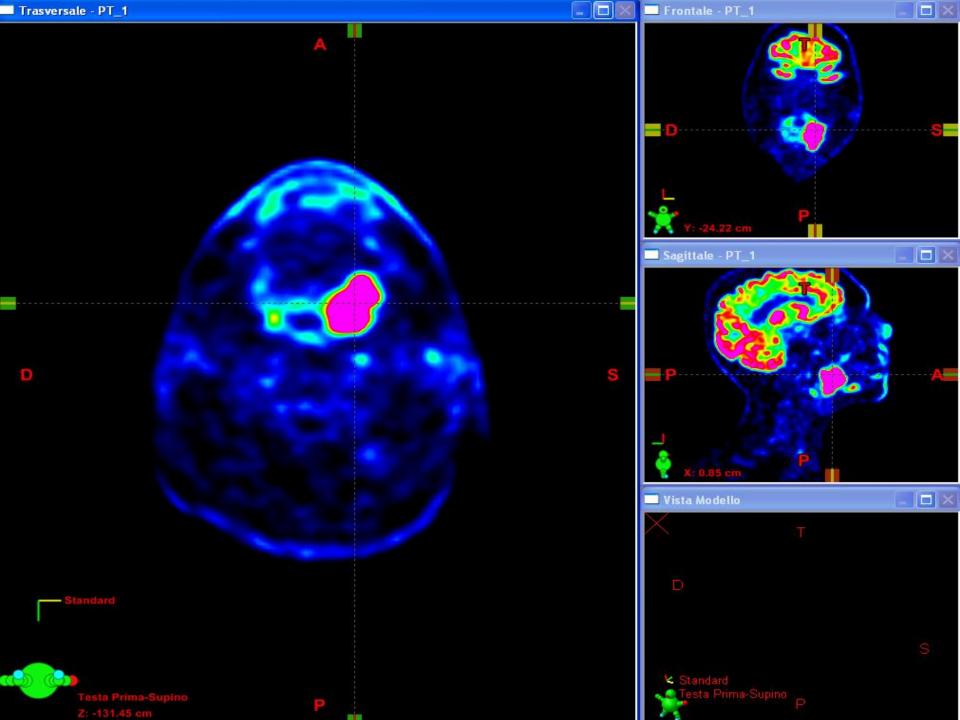
INDICAZIONI AL REPLANNING

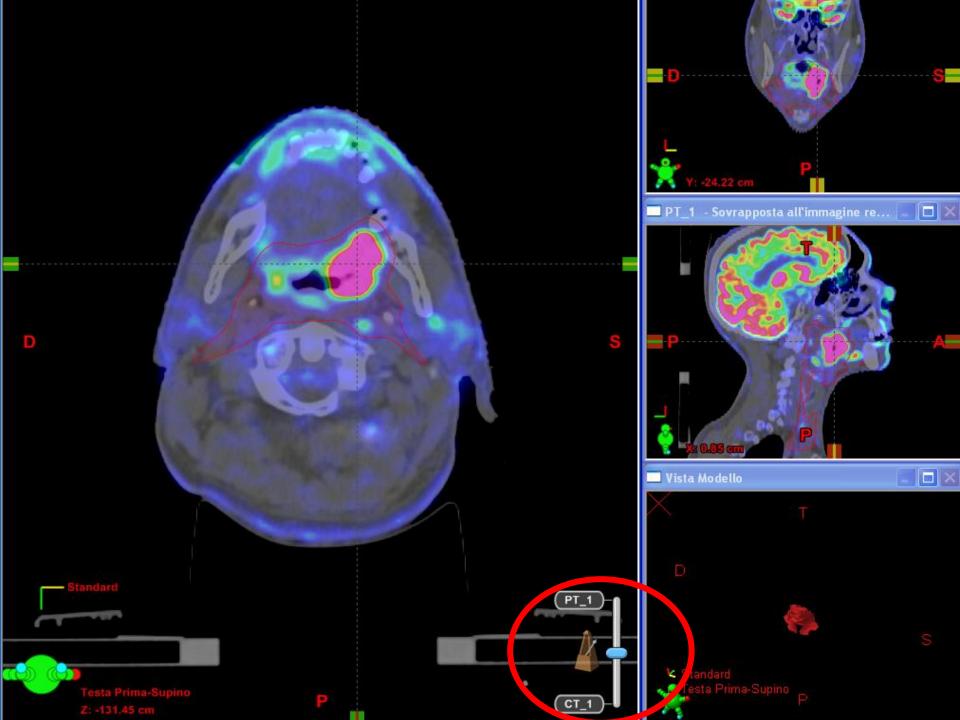
PTV D95 < 95%prescrizione Dmax midollo >45 Gy Dmedia parotide >26 Gy V60 mandibola >10% D54 tronco >20%

L'ESPERIENZA DELL'U.O.C. DI RADIOTERAPIA DI BARLETTA

MATERIALI E METODI

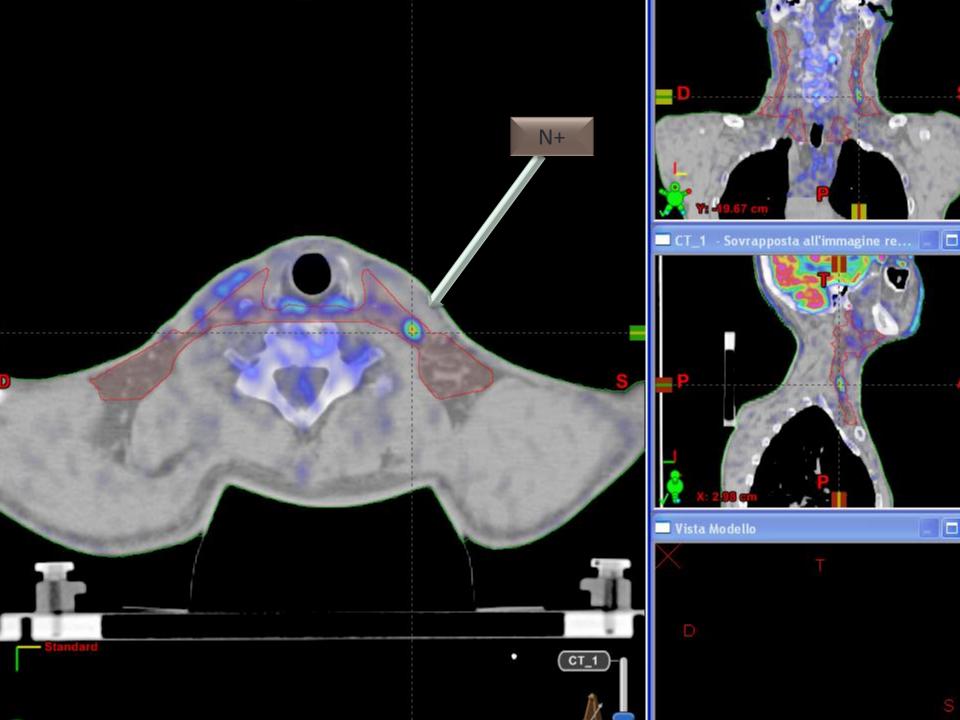
- ★ Febbraio 2010 → Settembre 2012
- x 19 pazienti
- Conferma istologica di tumore del distretto H&N
- Stadio II-IV
- Età media 64 anni (range 40-80)
- Valutazione multidisciplinare (oncologo medico, otorinolaringoiatra, radioterapista oncologo, nutrizionista) → indicazione a chemioterapia concomitante e valutazione locale con FLS
- Se non eseguita, richiesta RMN

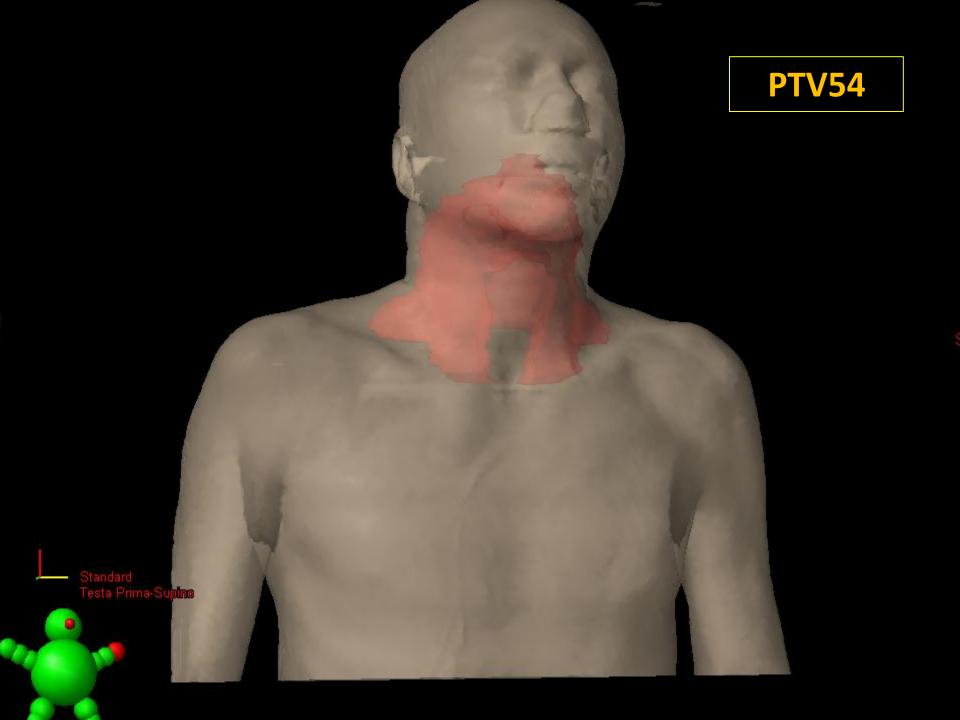

CARATTERISTICHE DEI PAZIENTI

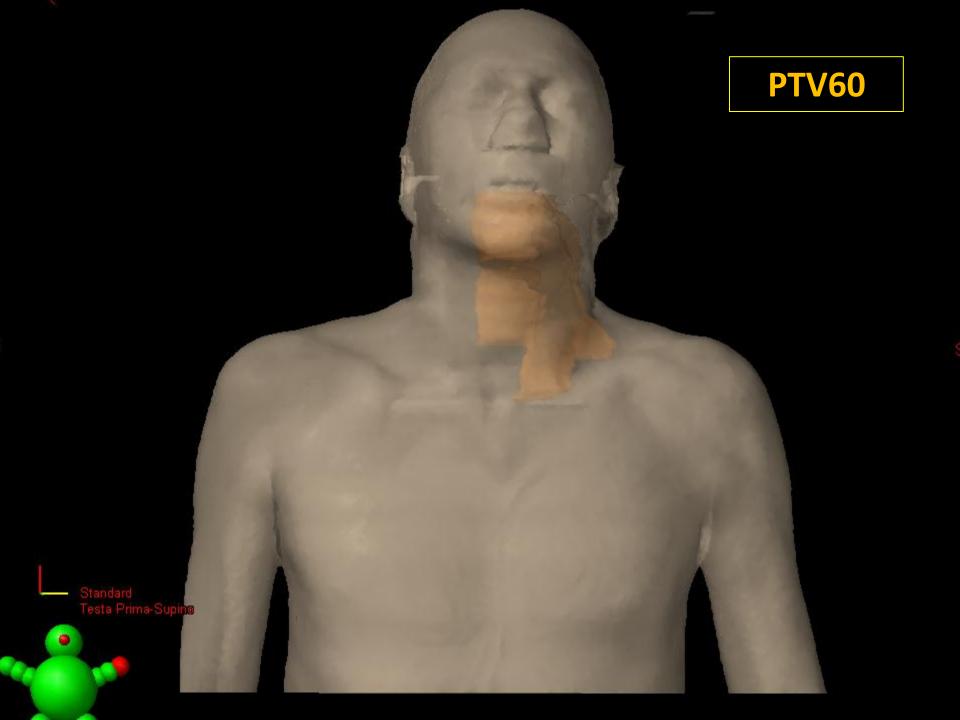

	N. Pz (%)		PAZIFINII	
GENERE				
M	14 (74)			
F	5 (26)		11111	N. D. (O()
SITO PRIMITIVO				N. Pz (%)
cavo orale	2 (11)	CHIRU	IRGIA	
orofaringe	11 (58)	si		6 (31.6)
laringe	2 (11)	no		13 (68.4)
rinofaringe	3 (16)	CHEM	IO PRE-RT	
occulto	1 (5)	si		4 (21.1)
TIPO ISTOLOGICO		no		15 (78.9)
squamoso	17 (89.5)	CHEM	IO CONCOMITANTE	
indifferenziato	2 (10.5)	CDE	OP q7	11 (57.9)
STADIO INIZIALE		CDE	OP q21	2 (10.5)
l I	0 (0)	Ceti	uximab	3 (15.8)
ll ll	3 (15.8)	Carl	boplatino	3 (15.8)
III	1 (5.3)			
IV	12 (63.2)			

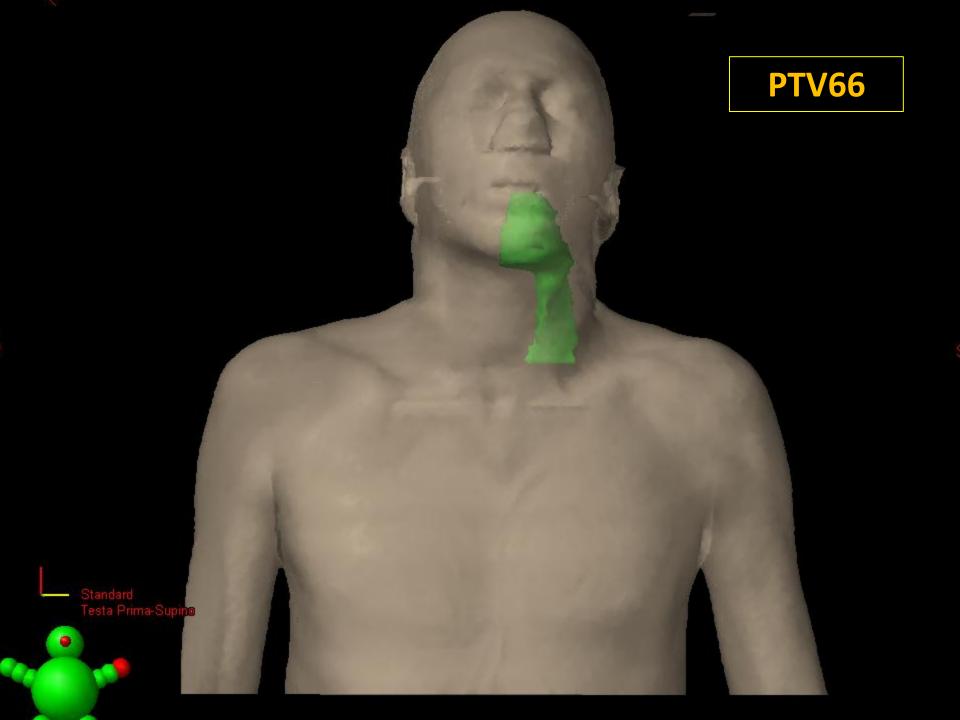
PET-TC DI SIMULAZIONE

- PET-TC Siemens Biograph con TC a 40 strati, laser mobili e di un lettino gemello al lettino di trattamento radioterapico (su cui è possibile fissare i sistemi di immobilizzazione)
- Immobilizzazione del capo in iperestensione mediante maschera termoplastica
- Acquisizione di immagini TC con uno slice thickness di 3 mm e immagini PET dal vertice del cranio al bacino
- Refertazione da parte del Medico Nucleare e trasferimento al TPS Eclipse





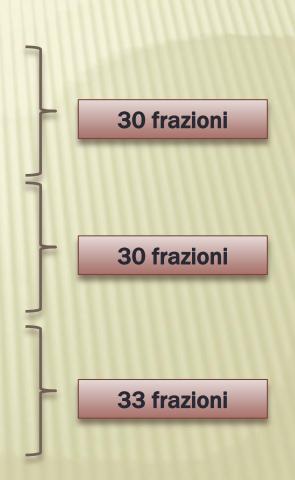

CONTORNAZIONE (2)

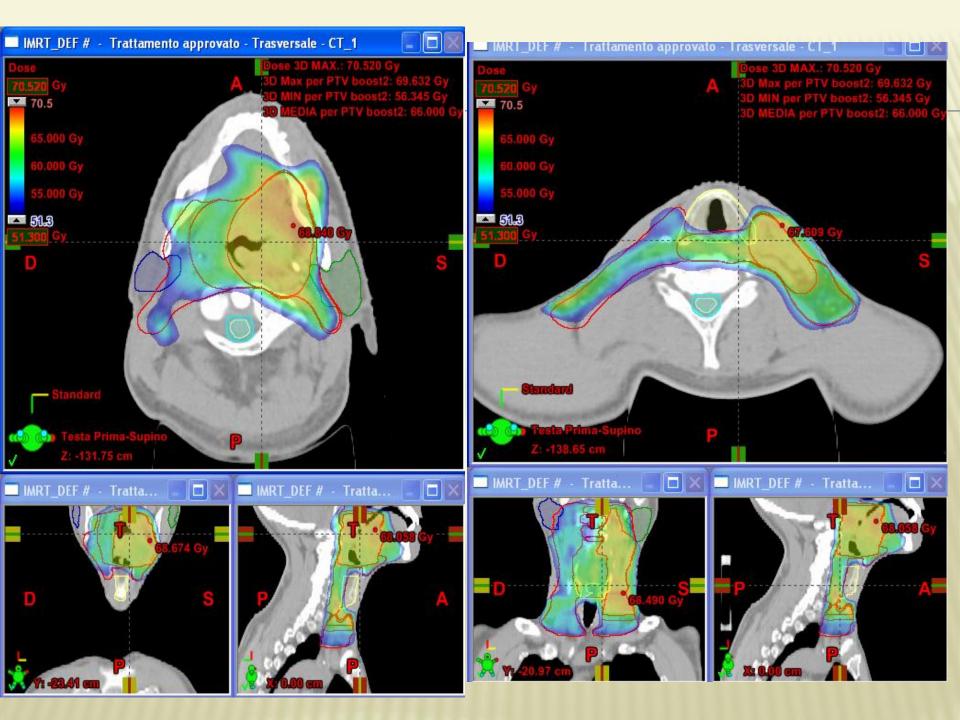

* Sulla base di PET-TC e RMN

- + GTV (malattia macroscopica)
- + CTV66 (GTV + 1-1,5 cm per disseminazione microsopica);
- + CTV60 (aree linfonodali ad alto rischio di diffusione metastatica e le sottosedi adiacenti a quella del tumore primitivo)
- + CVT54 (aree linfonodali a basso rischio di localizzazione)
- + PTV54, PTV60, PTV66 (CTV + 3mm, per tenere conto delle incertezze di setup)

PRESCRIZIONE DI DOSE: SIB

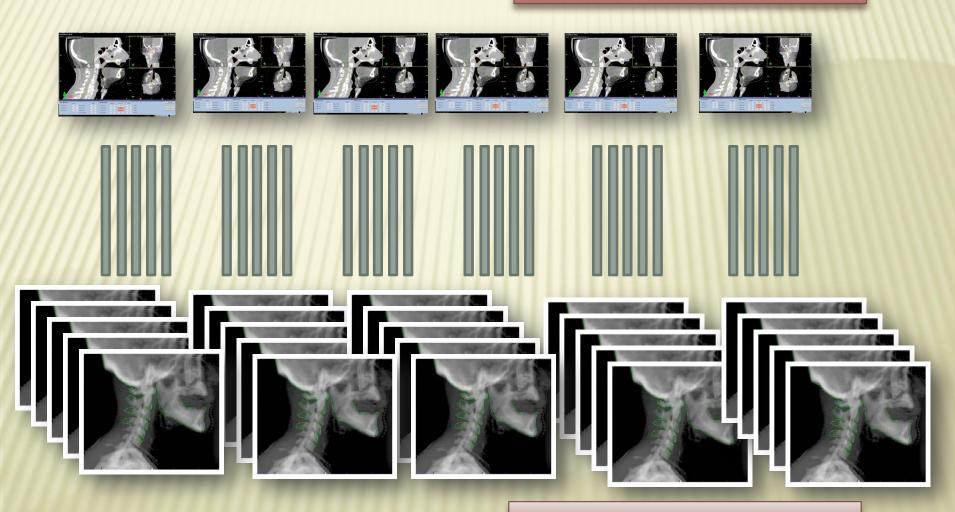
SIB(14 pazienti):


- + 66 Gy a 2.2 Gy/frazione per il volume PTV66
- + 60 Gy a 2 Gy/frazione per il volume PTV60
- + 54 Gy a 1.8 Gy per frazione per il PTV54

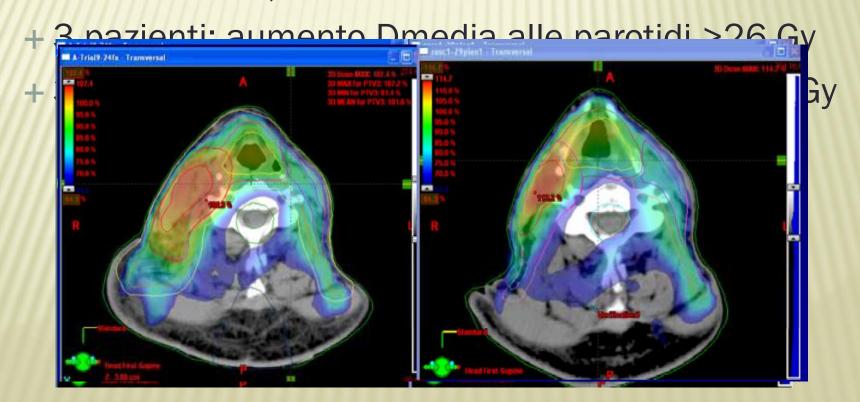

SIB (1 pazienti operato):

- + 60 Gy a 2 Gy/frazione per il volume PTV60
- + 54 Gy a 1.8 Gy per frazione per il PTV54

SIB (4 pazienti):


- + 69.6 Gy a 2.12 Gy per frazione per il PTV66
- + 59.4 Gy a 1.8 Gy per frazione per il PTV60
- + 54 Gy a 1.6 Gy per frazione per il PTV54

VERIFICHE


Weekly Cone Beam CT

Daily KV OBI

REPLANNING

- * In 10 pazienti è stato effettuato un Replanning
 - + 4 pazienti: diminuzione D95 al PTV (per shrinking della malattia)

TOSSICITÀ ACUTA

RISULTATI

OTT

- Interruzioni precoci del trattamento: 2 casi
 - + 24esima seduta (dose raggiunta al PTV66: 52.8 Gy)
 - + 28esima seduta (dose raggiunta al PTV66: 61.6 Gy)
- * Sospensioni del trattamento per tossicità: 8 pazienti
- Media giorni di interruzione = 4 giorni (range di 1- 16 giorni)
- * 9 pazienti (47.4%) hanno completato l'intero corso di radioterapia in maniera consecutiva

OTT mediano = 46 giorni (range 40-62 giorni)

TOSSICITÀ ACUTA

	GO(%)	G1(%)	G2(%)	G3(%)	G4(%)
Xerostomia	11 (57.9)	8 (42.1)	0 (0)	0 (0)	0 (0)
Tox cute	0 (0)	14 (73.7)	5 (26.3)	0 (0)	0 (0)
Mucosite	1 (5.3)	1 (5.3)	12 (63.2)	5 (26.3)	0 (0)
Leucopenia	13 (68.4)	2 (10.6)	2 (10.5)	1 (5.3)	1 (5.3)
Disfagia	1 (5.3)	1 (5.3)	15 (78.9)	2 (10.6)	0 (0)

Nessun paziente ha avuto necessità di alimentazione con sondino naso-gastrico (SNG) o con gastrostomia endoscopica percutanea (PEG)

	Deri	matite	e (%)			Mucosite (%)				Faringite/disfagia (%)				Alterazioni salivari (%)						
	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
Lee 2006	0	65	35	0	0	0	10	65	25	0	0	10	45	45	0	0	0	45	55	0
Lee 2007	13	65	19	3	0	10	42	26	23	0	0	0	87	13	0	-	-	-	-	-
Kam 2004	0	57	36	7	0	0	8	51	41	0	0	43	44	13	0	0	25	75	0	0
Kwong 2006	-	-	-	46	-	-	-	-	78	-	-	-	-	-	-	-	-	-	-	-
Butler 1999	-	-	-	-	-	-	-	-	80					50	-	-	-	-	-	-
Chao 2003	-	-	-	-	-	-	-	-	38	5	-	-	-	-	-	-	-	-	-	-
Lauve 2004 dose 1	-	-	-	17	-	-	-	-	83	-	-	-	-	17	0	-	-	-	-	-
Lauve 2004 dose 2	-	-	-	33	-	-	-	-	67	-	-	-	-	42	8	-	-	-	-	-
Lauve 2004 dose 3	-	-	-	0	-	-	-	-	10 0	-	-	-	-	10 0	0	-	-	-	-	-
De Arruda 2006	0	52	42	6	0	0	8	54	38	0	6	16	62	16	0	0	48	52	0	0
Studer 2006	-	-	-	5	-	-	-	-	15	-	-	-	-	20	-	-	-	-	-	-
Schwartz 2007	3	39	59	8	0	0	12	32	55	0	40	14	24	20	0	49	36	12	3	-
Guerrero Urbano 2007 63Gy	-	-	67	20	0	-	-	33	67	-	-	-	20	67	-	-	-	60	0	-
Guerrero Urbao 2007 67.2Gv	-	-	47	20	0	-	-	47	40	-	-	-	13	87	-	-	-	73	7	-
Our study	0	77	26	0	0	5	5	63	26	0	5	5	79	11	0	58	32	10	0	0

CONTROLLO DI MALATTIA

* Follow-up mediano: 8 mesi (medio 8.2, range 0-21 mesi)

	n pazienti (%)	 CHIRURGIA DI
LR	2 (10.5)	SALVATAGGIO
LnR	1 (5.3)	
DM	2 (10.5)	
os	17 (89.5)	
LC 21mths	16 (84.2)	

TOSSICITÀ TARDIVA

× Solo 14 pazienti hanno un follow-up abbastanza lungo da valutare la tossicità tardiva

Tossicità tardiva	
Xerostomia	
GO	3
G1	7
G2	4
G3	0
G4	0
Disfagia	
GO	12
G1	1
G2	0
G3	0
G4	0

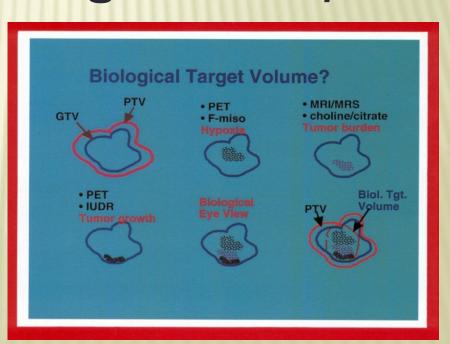
CONCLUSIONI

Vantaggi del SIB:

- + Consente una riduzione dell'OTT ed aumento del BED
- + Creazione di un unico piano di trattamento (semplificazione di pianificazione e delivery e migliore conformazione e controllo della distribuzione di dose rispetto ad IMRT-SEQ)

* Criticità del SIB:

- + Potenziale aumento della tossicità acuta ma soprattutto tardiva
- + Studi clinici eterogenei per sito primitivo e frazionamenti utilizzati
- + Necessità di follow-up più lunghi

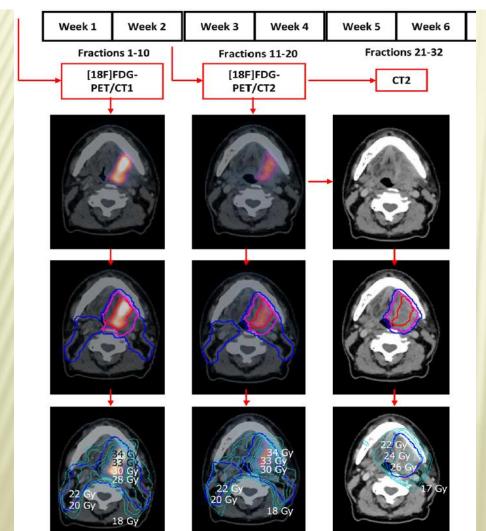

PROSPETTIVE FUTURE

recidive locali «in field»: 30-45 %

* Dalla MART (morphologic adaptive radiotherapy).....

* alla BART (biologic adaptive

radiotherapy)


IMAGING BIOLOGICO PER IL "DOSE PAINTING" DURANTE RT

1. FDG: metabolismo del glucosio

ADAPTIVE DOSE PAINTING BY NUMBERS FOR HEAD-AND-NECK CANCER

Fréderic Duprez, M.D., Wilfried De Neve, M.D., Ph.D., Werner De Gersem, Ir., Ph.D., Marc Coghe, Lic, and Indira Madani, M.D., Ph.D.

Department of Radiotherapy, Ghent University Hospital, Ghent, Belgium

CTV h.dose: 80.9 Gy /3 Gy/die (step 1)

CTV h.dose: 85.9 Gy/3.5 Gy/die (step 2)

IMAGING BIOLOGICO PER IL "DOSE PAINTING" DI GTV SUBVOLUMES

- 1. FDG: metabolismo del glucosio
- 2. FLT (fluorotimidina): proliferazione tumorale

¹⁸F-FLT PET/CT for Early Response Monitoring and Dose Escalation in Oropharyngeal Tumors

Esther G.C. Troost¹, Johan Bussink¹, Aswin L. Hoffmann¹, Otto C. Boerman², Wim J.G. Oyen², and Johannes H.A.M. Knanders¹

OROFARINGE

FLT-PET/CT ALLA SETTIMANA -1, 2 and 4→ LE VARIAZIONI SONO VISIBILI PRECOCEMENTE alla PET rispetto alle modifiche volumetriche

Diminuzione SUV max del 40-50% tra settimana -1 e 2

FIGURE 1. ¹⁸F-FLT PET/CT image of T3N0M0 oropharyngeal tumor before radiation therapy. Shown are GTV_{CT} (red), GTV_{SSR} (green), and GTV_{SSN}. GTV_{SSN} is highlighted in pink.

¹⁸F-FLT PET/CT for Early Response Monitoring and Dose Escalation in Oropharyngeal Tumors

Esther G.C. Troost¹, Johan Bussink¹, Aswin L. Hoffmann¹, Otto C. Boerman², Wim J.G. Oyen², and Johannes H.A.M. Kaanders¹

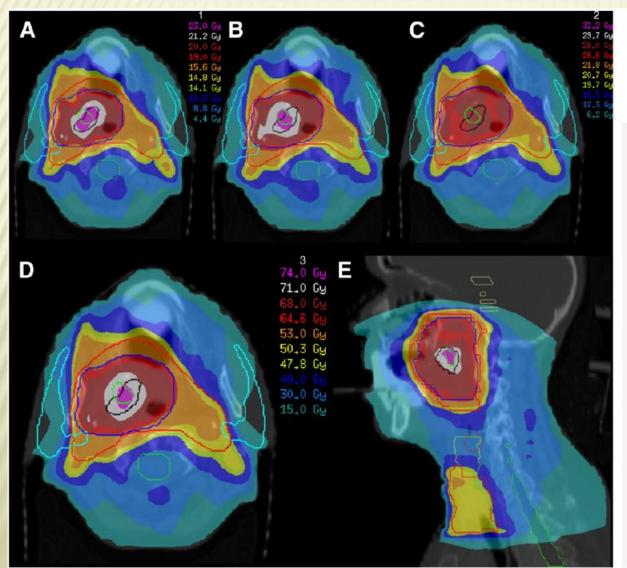


FIGURE 4. Dose escalation to GTV_{80%1} and GTV_{80%2} for T3N0M0 oropharyngeal tumor. Using IMRT with integrated simultaneous boost technique, total dose was 50.3 Gy to bilateral cervical lymph node regions (large planning target volume, red) and 68 Gy to primary tumor (small planning target volume, blue). GTV_{80%1} (black) and GTV_{80%2} (green) were consecutively irradiated with 2.3 Gy for 10 fractions, resulting in dose of 71 Gy in total and dose of 74 Gy in overlapping region. (A and B) Dose distributions for first 2 wk of treatment (A) and weeks 3 and 4 (B); see legend 1. (C) Dose distribution for remaining 14 fractions without dose escalation; see legend 2. (D and E) Dose distributions of total treatment plan in transverse (D) and sagittal (E) planes; see legend 3. Parotid glands are delineated in sky blue and spinal cord in green.

IMAGING BIOLOGICO PER IL "DOSE PAINTING" DI GTV SUBVOLUMES

- 1. FDG: metabolismo del glucosio
- 2. FLT (fluorotimidina): proliferazione tumorale
- 3. F- misonidazolo: ipossia

THE INFLUENCE OF CHANGES IN TUMOR HYPOXIA ON DOSE-PAINTING TREATMENT PLANS BASED ON ¹⁸F-FMISO POSITRON EMISSION TOMOGRAPHY

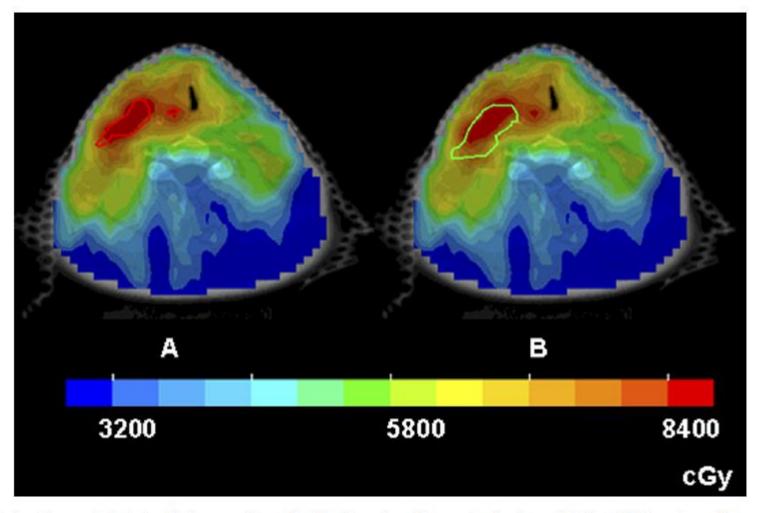


Fig. 5. Intensity-modulated radiotherapy dose distributions in color-wash display of Patient 7, for whom the sequential hypoxia images were dissimilar. (a) Both sub-volumes of $V_{\rm H\,I}$ (the red contours) received 84 Gy. (b) When the same treatment plan was applied to $V_{\rm H\,2}$ (the green contour), part of the hypoxic volume did not receive the intended boost dose.

IMAGING BIOLOGICO PER IL "DOSE PAINTING" DI GTV SUBVOLUMES

1.

TIME AND RESOURCES CONSUMING

3

