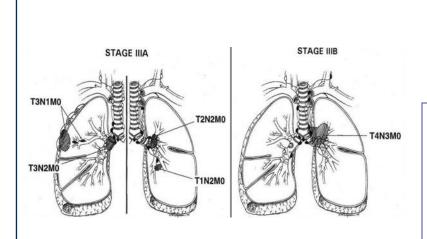
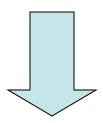


Integrated approaches

in Locally Advanced Non-Small Cell Lung Cancer

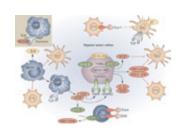
Michele Fiore




Università Campus Bio-Medico di Roma - Via Álvaro del Portillo, 21 - 00128 Roma - Italia www.unicampus.it

Locally Advanced NSCLC

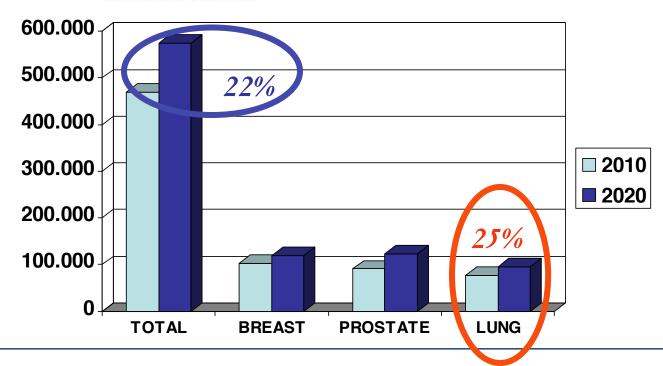
is


a widely heterogeneous disease

Staging
Clinical factors
Tumor biology

Non-Small Cell Lung Cancer:

The End of the Era of Therapeutic Nihilism?

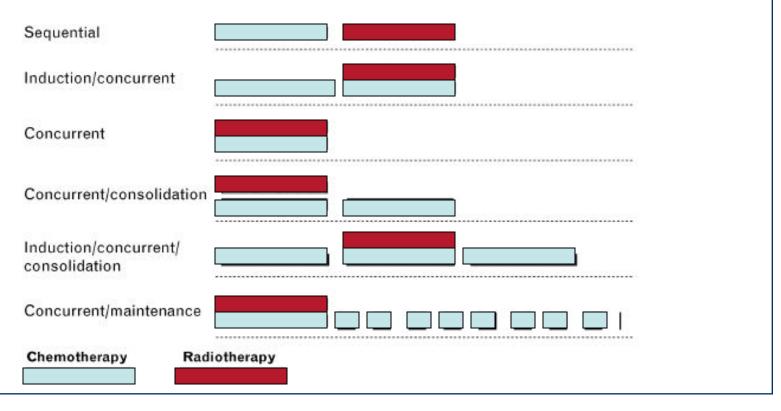


JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

The Future of Radiation Oncology in the United States From 2010 to 2020: Will Supply Keep Pace With Demand?

Benjamin D. Smith, Bruce G. Haffty, Lynn D. Wilson, Grace L. Smith, Akshar N. Patel, and Thomas A. Buchholz



In the last decade, we have witnessed a wealth of clinical trials showing that radiotherapy is an important component in the treatment with curative intent.

What is the Optimal Sequence of Chemoradiation?

CONCURRENT vs SEQUENTIAL RT-CT

711 patients
3 randomized trials

1205 patients 6 randomized trials

O'Rourke N. Clin Oncol 22:347–355, 2010

14% reduction in risk of death at 2y

Study or subgroup	Concurrent n/N	Sequential n/N	Risk Ratío M-H,Random,95% Cl	Weight	Risk Ratio M-H,Random,95% Cl
Curran 2003	127/201	139/201		49.7 %	0.91 [0.79, 1.05]
Fournel 2001	67/103	80/104	-	31.4 %	0.85 [0.71, 1.01]
Zatloukal 2003	34/52	43/50		18.9 %	0.76 [0.61, 0.95]
Total (95% CI)	356	355	•	100.0 %	0.86 [0.78, 0.95]
Total events: 228 (Concu	rrent), 262 (Sequential)				
Heterogeneity: Tau² = 0.0); $Chi^2 = 1.90$, $df = 2$ (F	P = 0.39); I ² = 0.0%			
Test for overall effect; Z =	= 2.96 (P = 0.0031)				p = 0.003
			0.5 0.7 1 1.5 2		_
			favours concurrent favours sequent	ial	

Clinical Oncology 22 (2010) 347-355

Contents lists available at ScienceDirect

Clinical Oncology

journal homepage: www.elsevier.com/locate/clon

Overview

Is Concurrent Chemoradiation the Standard of Care for Locally Advanced Non-small Cell Lung Cancer? A Review of Guidelines and Evidence

N. O'Rourke*, F. Macbeth†

	Median Survival (months)	Treatment- related mortality	G3 oesophagitis
Concurrent	16-17	3 %	19 %
Sequential	13-15	1,7 %	3 %

O'Rourke N. Clin Oncol 2010

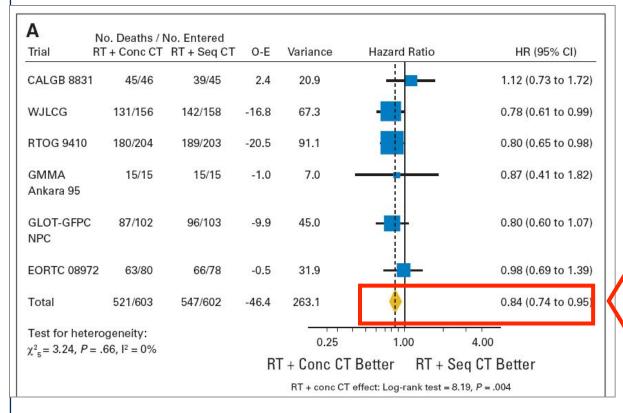
^{*} Cochrane Lung Cancer Group, Beatson Oncology Centre, Gartnavel General Hospital, Glasgow, UK

[†] National Institute for Health and Clinical Excellence, London, UK

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Meta-Analysis of Concomitant Versus Sequential Radiochemotherapy in Locally Advanced Non-Small-Cell Lung Cancer

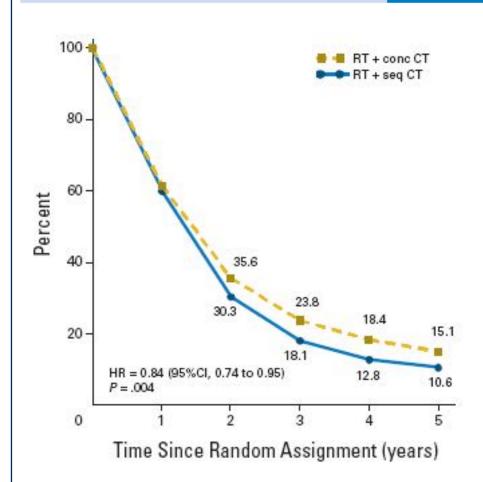

6 Trials 1205 pts Median Follow-up 6 years

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Benefit concomitant RT-CT:

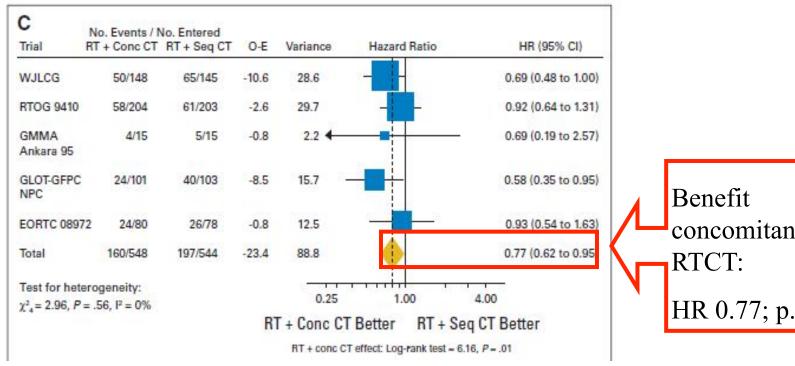
HR 0.84 95% CI, 0.74 to 0.95; p.004


Overall Survival

VOLUME 28 · NUMBER 13 · MAY 1 2010

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT



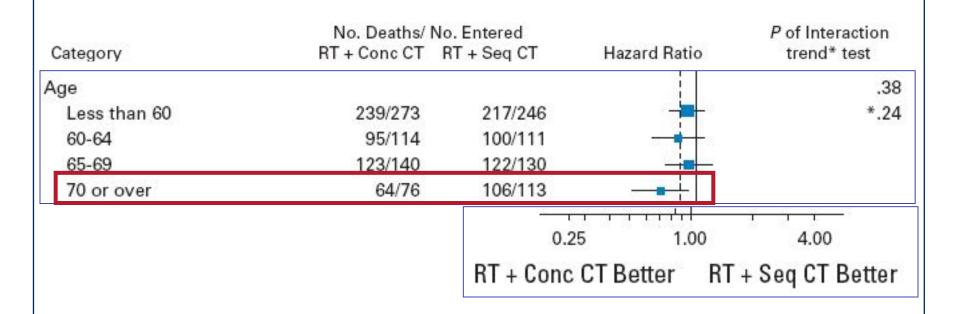
Absolute survival benefit of 5.7% at 3 years and an absolute benefit of 4.5% at 5 years

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

concomitant HR 0.77; p.001

Loco-regional Control



VOLUME 28 · NUMBER 13 · MAY 1 2010

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

ELDERLY PATIENTS

Sequential vs Concurrent Chemoradiation for Stage III NSCLC:

Randomized Phase III Trial RTOG 9410

601 patients

Arm 1:

R

A

N

D

0

M

Z

E

vinblastine 5 mg/m² IV bolus weekly first 5 weeks cisplatin 100 mg/m² IV over 30-60 minutes, days 1 & 29

(starting day 50)
63 Gy/7 wks/34 daily fractions (1.8 Gy x 25 fx, then

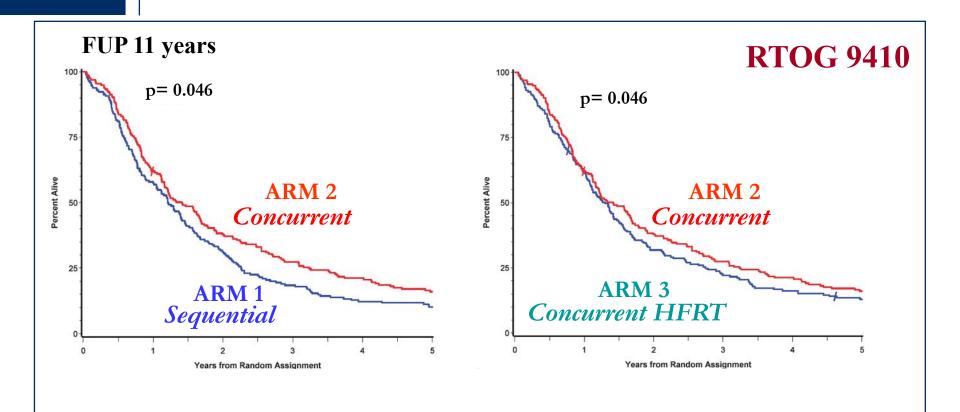
 $2.0 \, \text{Gy} \, \text{x} \, 9 \, \text{fx}$

Sequential

Arm 2:

vinblastine 5 mg/m² IV bolus weekly first 5 weeks cisplatin 100 mg/m² IV over 30-60 minutes, days 1 & 29 63 Gy/7 wks/34 daily fractions (1.8 Gy x 25 fx, then 2.0 Gy x 9 fx)

Concurrent


Arm 3:

oral etoposide 50 mg twice daily x 10 only on RT treatment days 1-5, 8-12, 29-33 and 36-40 (75 mg/day if body surface area < 1.7 m²) cisplatin 50 mg/m² IV over 30-60 minutes on days 1 and 8 and 29 and 36 69.6 Gy/6 wks/58 x 1.2 Gy twice-daily fractions (at least 6 hours apart)

Concurrent HFRT

Curran et al, JNCI 2011

	Median SVV (months)	SVV @ 5y (%)
Arm 1	14.6	10
Arm 2	17	16
Arm 3	15.6	13

Similar late toxic effects

Curran et al, JNCI 2011

What is the Optimal Sequence of Chemoradiation?

These data suggest that chemotherapy, concurrently given with radiotherapy, improves the efficacy of the radiotherapy by its radiosensitizing effect.

Currently, concurrent chemoradiation is the standard treatment in patients with locally advanced NSCLC.

Chemoradiation in Neoadjuvant Setting

Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial

Lancet 2009: 374: 379-86

Kathy S Albain, R Suzanne Swann, Valerie W Rusch, Andrew T Turrisi III, Frances A Shepherd, Colum Smith, Yuhchyau Chen, Robert B Livingston, Richard H Feins, David R Gandara, Willard A Fry, Gail Darling, David H Johnson, Mark R Green, Robert C Miller, Joanne Ley, William T Sause, James D Cox

201 pts

Radical RT-CT

RT: 61 Gy – Standard fx

CT: CDDP 50 mg/m² d1,8,29,36

VP16 50 mg/m² d1-5,29-33

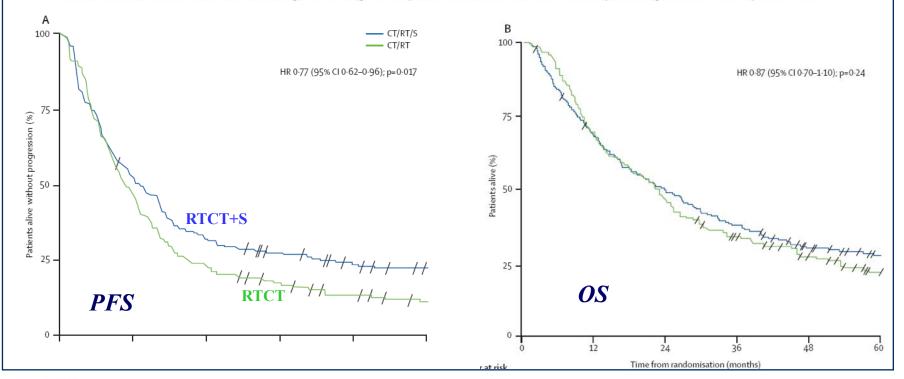
191 pts

Neoadj RT-CT → **Surgery**

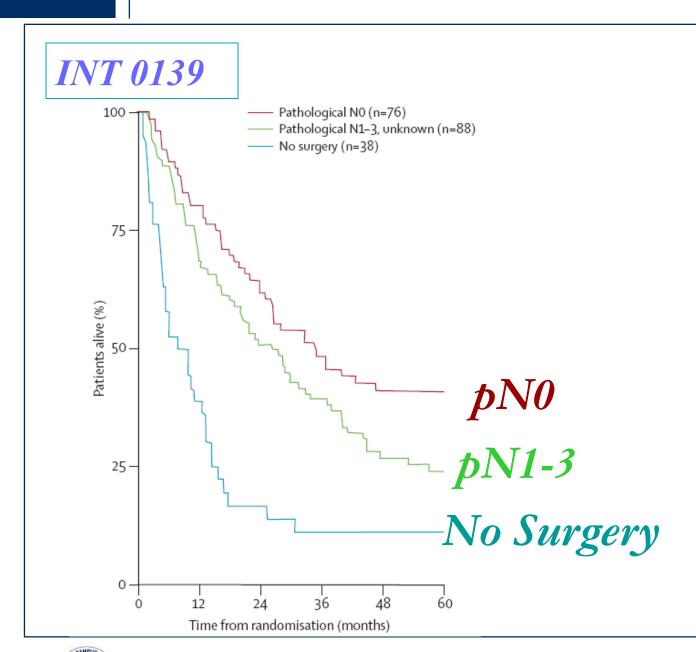
RT: 45 Gy – Standard fx

CT: CDDP 50 mg/m² d1,8,29,36

VP16 50 mg/m² d1-5,29-33

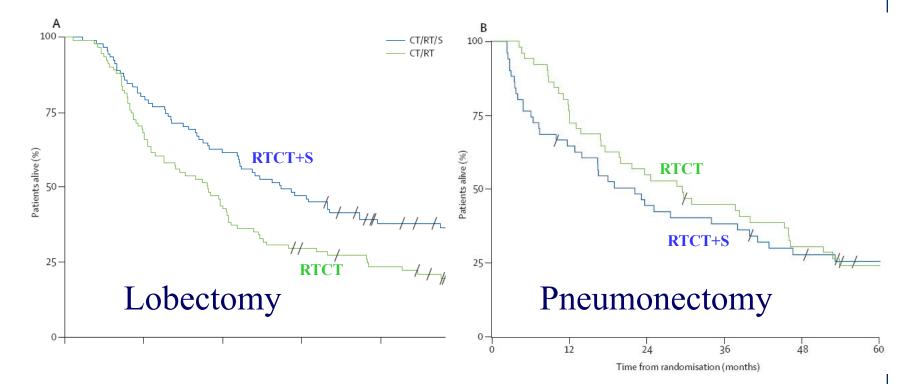


Chemoradiation in Neoadjuvant Setting


Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial

Lancet 2009; 374: 379-86

Kathy S Albain, R Suzanne Swann, Valerie W Rusch, Andrew T Turrisi III, Frances A Shepherd, Colum Smith, Yuhchyau Chen, Robert B Livingston, Richard H Feins, David R Gandara, Willard A Fry, Gail Darling, David H Johnson, Mark R Green, Robert C Miller, Joanne Ley, Willliam T Sause, James D Cox

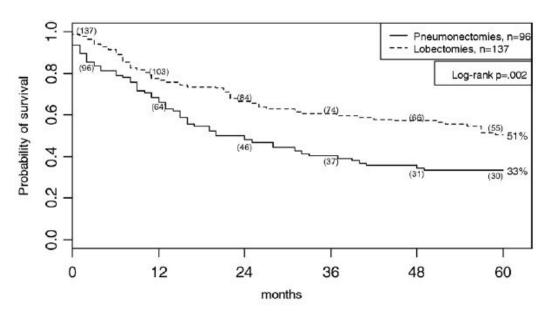


Lancet 2009; 374: 379-86

INT 0139

Overall Survival

Lancet 2009; 374: 379-86


Neoadjuvant Chemoradiation for Clinically Advanced Non-Small Cell Lung Cancer: An Analysis of 233 Patients

Neoadiuvant chemoradiation

Survival: median 40 months, 5-y 43%

Mortality 30 days: 3%, 90 days 8%

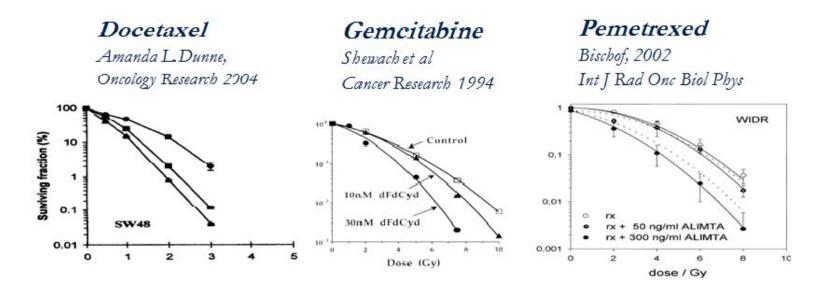
T0 or N0 or T0N0 is associated with the best survival rate

Lobectomy is better than pneumonectomy

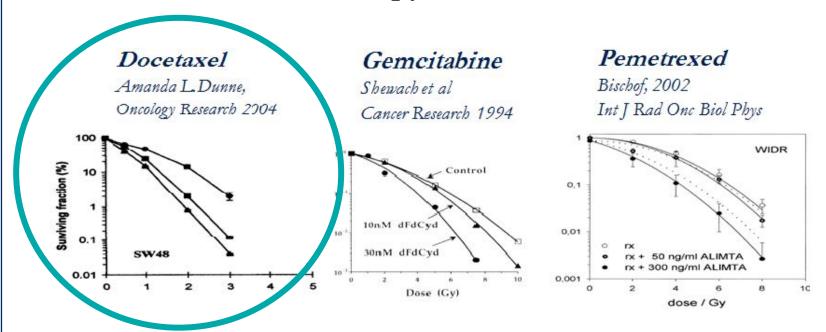
Kim et al., Ann Thorac Surg 2011;92: 233-43

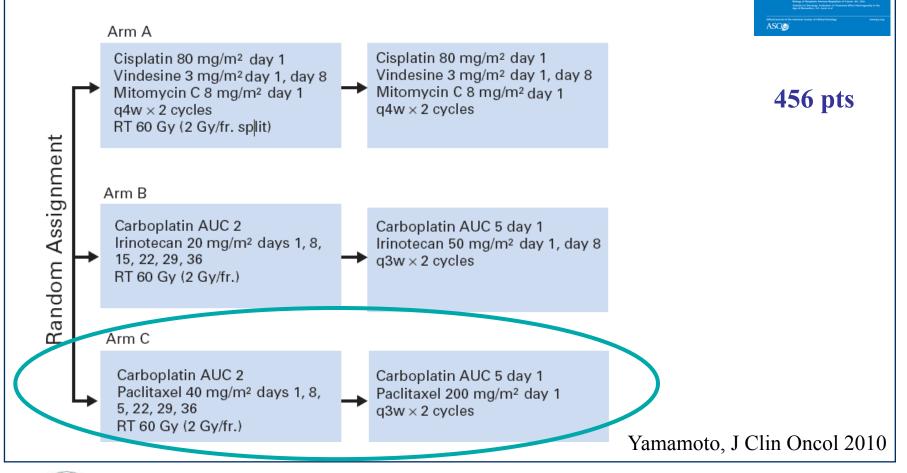
Chemoradiation in Neoadjuvant Setting

Trimodality therapy offers a promising chance of long-term survival



Choise of concomitant drugs: What is the Optimal Combination?


• The most efficacious chemotherapy drugs to be combined with thoracic radiotherapy is NOT established


• The most efficacious chemotherapy drugs to be combined with thoracic radiotherapy is NOT established

Phase III Study Comparing Second- and Third-Generation Regimens With Concurrent Thoracic Radiotherapy in Patients With Unresectable Stage III Non–Small-Cell Lung Cancer:

West Japan Thoracic Oncology Group WJTOG0105

JOURNAL OF CLINICAL

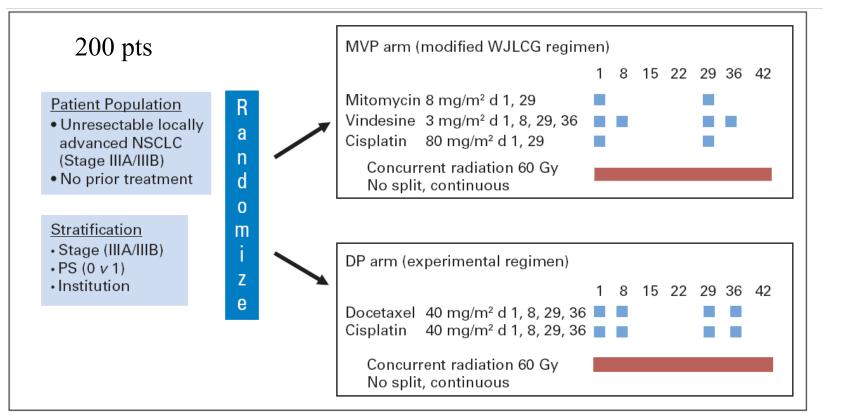
ONCOLOGY

Phase III Study Comparing Second- and Third-Generation Regimens With Concurrent Thoracic Radiotherapy in Patients With Unresectable Stage III Non–Small-Cell Lung Cancer:

West Japan Thoracic Oncology Group WJTOG0105

456 pts

	Median SVV (months)	SVV @5y (%)	Neutropenia ≥G3 (%)	Treatment interruptions (%)
Arm A	20.5	17.5	95.9	18.5
Arm B	19.8	17.8	60.5	32.7
Arm C	22	19.8	61.9	12.2

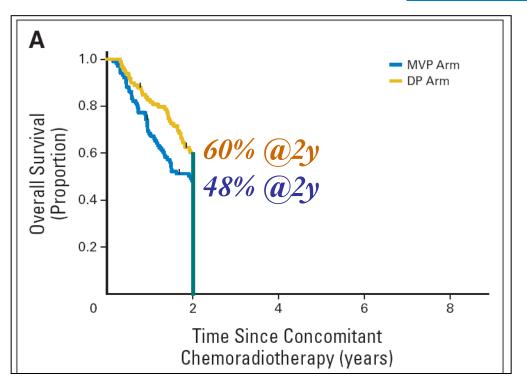

Arm C was equally efficacious and exhibited a more favorable toxicity profile

Yamamoto, J Clin Oncol 2010, 28:3739-45

Phase III Trial Comparing Docetaxel and Cisplatin Combination Chemotherapy With Mitomycin, Vindesine, and Cisplatin Combination Chemotherapy With Concurrent Thoracic Radiotherapy in Locally Advanced Non–Small-Cell Lung Cancer: OLCSG 0007

The median survival time (MST):

DP Arm

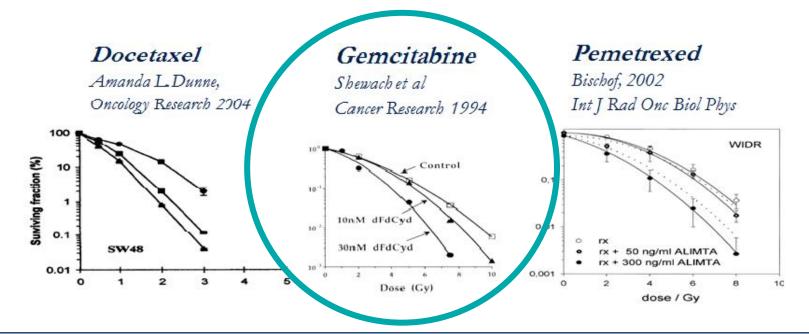

→ 26.8 months (95% CI, 23.6 to 33.4 months)

MVP Arm

→ 23.7 months (95% CI, 15.9 to 33.2 months)

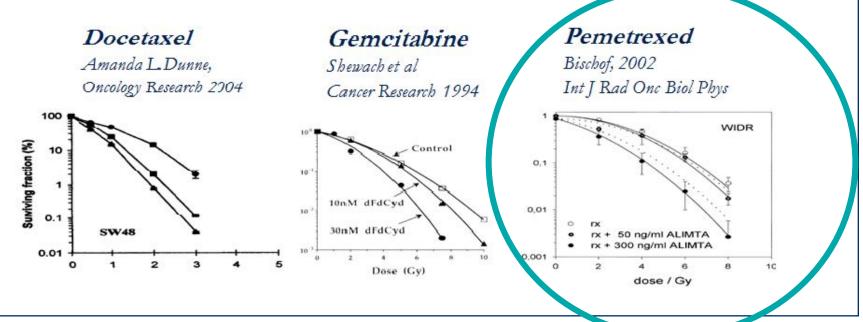
JOURNAL OF CLINICAL OF CLINICA

The survival time at 2 years, a primary end point, was favorable to the DP arm (p=0.05)



Segawa J Clin Oncol 2010, 28: 3299-3306

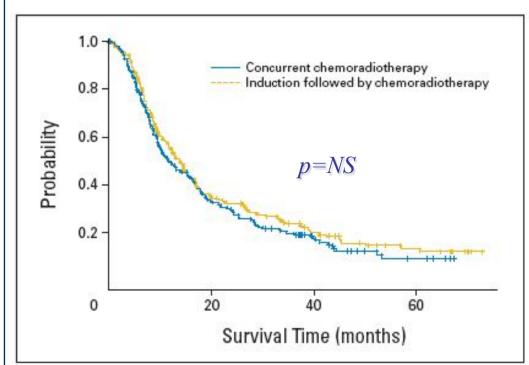
• The most efficacious chemotherapy drugs to be combined with thoracic radiotherapy is NOT established


Gemcitabine

Study	СТ	N of pts	ORR	
Van Putten	Gemcitabine	24	63%	(00/
Trodella	Gemcitabine	62	74%	68%
CALGB 9431	CDDP+Gemcitabine	62	74%	900/
Trodella	CDDP+Gemcitabine	50	93%	80%

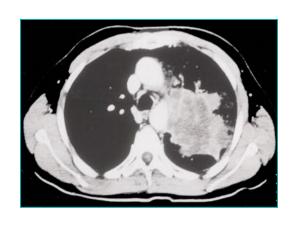

• The most efficacious chemotherapy drugs to be combined with thoracic radiotherapy is NOT established

Pemetrexed	Trial	СНТ	RT Gy	Limiting Toxicity	Efficacy
Gadgel J Clin Oncol 2008	Phase I	CBCDA AUC 6 and biweekly Pemetrexed 300 mg/mq	63 Gy	esophagitis infection	78%
Brade Int J Radiat Oncol Biol Phys 2010	Phase I	Pemetrexed 500 mg/mq CDDP 75-80 mq/ mq	64 Gy	pulmonary	88%
Surmont Lung Cancer 2010	Phase I	Pemetrexed 500 mg/mq and CDDP (60-80 mg/mq)	66 Gy	none	NA
Brade J Clin Oncol 2010	Phase II	Pemetrexed 500 mg/mq+CDDP 20mg/mq 1-5 q 21	61-65 Gy	none	OS 19.7 months PFS 11.8months
Vokes J Clin Oncol 2011	Phase II	Pemetrexed 500+ CBCDA AUC 5	70 Gy	none	RR=77% OS 23 months


PROCLAIM: A Phase III Study of Pemetrexed, Cisplatin, and Radiation Therapy Followed by Consolidation Pemetrexed Versus Etoposide, Cisplatin, and Radiation Therapy Followed by Consolidation Cytotoxic Chemotherapy of Choice in Locally Advanced Stage III Non-Small-Cell Lung Cancer of Other than Predominantly Squamous Cell Histoloav

Vokes et al Clin Lung Cancer 2009 May;10(3): 193-8

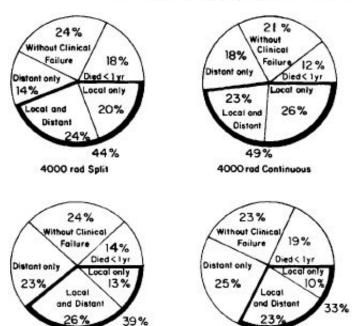
Induction Chemotherapy CALGB 39801


RESULTS	RTCT	CT → RTCT
Median survival	12 mo	14 mo
Failure free survival	7 mo	8 mo
Distant failure	86 pts	84 pts

"The addition of induction chemotherapy does not provide a survival benefit over concurrent therapy alone..."

Vokes, JCO 2007

Induction chemotherapy does not improve OS and PFS...but could


- ✓ Decrease tumor volume
- ✓ Decrease irradiated volume
- ✓ Decrease tumor spread (metastasis)
- ✓ Select a good prognostic group of patients before RT-CT

A Prospective Randomized Study of Various Irradiation Doses and Fractionation Schedules in the Treatment of Inoperable Non-Oat-Cell Carcinoma of the Lung

Preliminary Report by the Radiation Therapy Oncology Group

C. A. PEREZ, MD,* K. STANLEY, PHD,† P. RUBIN, MD,‡ S. KRAMER, MD§, L. BRADY, MD,* R. PEREZ-TAMAYO, MD,#
G. S. BROWN, MD,* J. CONCANNON, MD,** M. ROTMAN, MD,†† AND H. G. SEYDEL, MD‡‡

RTOG 73-01

"The current study strongly suggests that dosages in the range of <u>5000-6000</u> cGy yield higher tumor response, better survival and less intrathoracic recurrences"

Perez CA, Cancer 1980) 45(2): 2744-2754

5000 rad Continuous

6000 rad Continuous

TOXICITY AND OUTCOME RESULTS OF RTOG 9311: A PHASE I-II DOSE-ESCALATION STUDY USING THREE-DIMENSIONAL CONFORMAL RADIOTHERAPY IN PATIENTS WITH INOPERABLE NON-SMALL-CELL LUNG CARCINOMA

JEFFREY BRADLEY, M.D., * MARY V. GRAHAM, M.D., * KATHRYN WINTER, M.S., * JAMES A. PURDY, Ph.D., RITSUKO KOMAKI, M.D., WILSON H. ROA, M.D., JANICE K. RYU, M.D., WALTER BOSCH, D.Sc., AND BAHMAN EMAMI, M.D. **

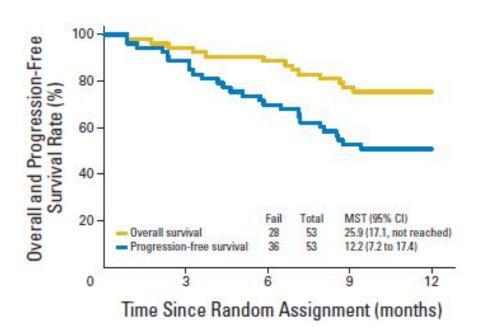
Group 1 (V20<25%)			
70.9 Gy	77.4 Gy	83.8 Gy	90.3 Gy
n 28	n 26	n 33	n 40

Group 2 (V20 25-36%)		
70.9 Gy	77.4 Gy	
n 21	n 27	

Bradley J, IJROBP 2005; 61(2):318-328

RTOG 93-11

Treatment (Gy)	Estimate Rate Grade 3 Lung Toxicity at 18 mo (%)
Group 1 (<25%)	
70.9	7
77.4	16
83.8	0
90.3	13
Group 2 (25-36%)	
70.9	15
77.4	15


Treatment (Gy)	Estimate Rate Grade 3 Esophageal Toxicity at 18 mo (%)
Group 1 (<25%)	
70.9	8
77.4	0
83.8	4
90.3	6
Group 2 (25-36%)	
70.9	0
77.4	5

The radiation dose was safely escalated using 3D-CRT techniques to 83.8 Gy for patients with V20 values of <25% (Group 1) and to 77.4 Gy for patients with V20 values between 25% and 36% (Group 2), using fraction sizes of 2.15 Gy.

Bradley J, IJROBP 2005; 61(2):318-328

A Phase I/II Radiation Dose Escalation Study with Concurrent Chemotherapy for Patients with Inoperable Stages I-III Non-Small Cell Lung Cancer: The Phase I Results of RTOG 0117

The MTD was determined to be 74 Gy/37 fractions (2.0 Gy per fraction) using 3DCRT with concurrent paclitaxel and carboplatin

OS and PFS rates at 12 months were 72.7% and 50.0%, respectively.

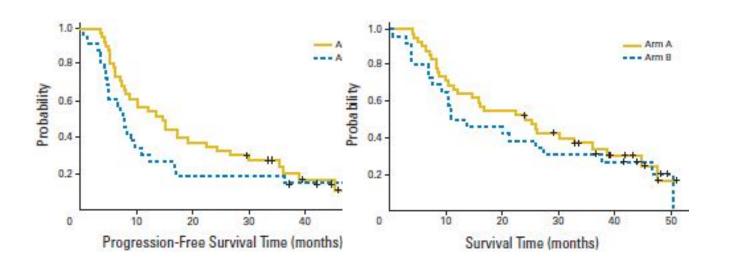
Bradley J, IJROBP 2010; 77(2):367-372

RESULTS OF A PHASE I TRIAL OF CONCURRENT CHEMOTHERAPY AND ESCALATING DOSES OF RADIATION FOR UNRESECTABLE NON-SMALL-CELL LUNG CANCER

Steven E. Schild, M.D.,* William L. McGinnis, M.D.,† David Graham, M.D.,* Shauna Hillman, M.S.,* Tom R. Fitch, M.D.,§ Donald Northfelt, M.D.,§ Yolanda I. Garces, M.D.,* Homayoon Shahidi, M.D.,¶ Loren K. Tschetter, M.D.,

Paul L. Schaefer, M.D.,# Alex Adjei, M.D.,* and James Jett, M.D.*

Dose level	Dose RT (Gy)/fxs	N pts	N DLT
1	70/35	3	0
2	74/37	6	1
3	78/39	4	2


The MTD of the RT was 74 Gy with weekly carboplatin and paclitaxel

Shild SE, IJROBP 2006; 65: 1106-1111

Randomized Phase II Trial of Induction Chemotherapy Followed by Concurrent Chemotherapy and Dose Escalated Thoracic Conformal Radiotherapy (74 Gy) in Stage III Non-Small Cell Lung

Cancer: CALGB 30105

MST was 24 months and 26% of patients survived 5 years.

The grade of 3 to 4 esophagitis was less than 10% and no grade 3 to 4 pulmonary toxicity was observed.

Socinski MA, J Clin Oncol 2008; 26(2): 2457-63

JOURNAL OF CLINICAL ONCOLOGY

DOSE ESCALATION and CONCURRENT CHEMOTHERAPY

• NCCTG 0028

Schild S. IJROBP 2006

• CALGB 30105

Socinski MA. JCO 2008

• RTOG 0117

Bradley J, IJROBP 2010

Feasibility of escalated total dose with concurrent chemotherapy (Carboplatin AUC2 and Paclitaxel 50 mg/mq/weekly)

74 Gy-2Gy/fx

RTOG 0617

A Randomized Phase III Comparison of Standard-Dose (60 Gy) versus High-Dose (74 Gy) Conformal Radiotherapy with Concurrent and Consolidation Carboplatin/Paclitaxel +/- Cetuximab in Patients with Stage IIIA/IIIB Non-Small Cell Lung Cancer

Intergroup Partecipation:

RTOG, NCCTG, CALGB

RTOG 0617

Concurrent Treatment	Consolidation Treatment
Arm A	Arm A
Concurrent chemotherapy	Consolidation chemotherapy
RT to 60 Gy, 5 fx per wk for 6 wks	
Arm B	Arm B
Concurrent chemotherapy	Consolidation chemotherapy
RT to 74 Gy, 5 fx per wk for 7.5 wks	
Arm C	Arm C
Concurrent chemotherapy and	Consolidation chemotherapy
Cetuximab	and Cetuximab
RT to 60 Gy, 5 fx per wk for 6 wks	
Arm D	Arm D
Concurrent chemotherapy and	Consolidation chemotherapy
Cetuximab	and Cetuximab
RT to 74 Gy, 5 fx per wk for 7.5 wks	

ASTRO's Annual Meeting

Miami Beach October 2-6, 2011

RTOG 0617

Between November 2007 and April 2011, 423 study participants were enrolled in the RTOG trial

423 patients	Median OS
High dose RT (74 Gy)	20.7 months
Standard dose (60 Gy)	21.7 months
	P=0.02

There was no significant difference in treatment-related toxicity between treatment arms

"High dose conformal radiotherapy (74 Gy) did not improve survival, compared standard dose (60 Gy) in patients with unresectable NSCLC"

Int. J. Radiation Oncology Biol. Phys., Vol. 82, No. 3, pp. 1042–1044, 2012

Copyright © 2012 Elsevier Inc.

Printed in the USA. All rights reserved

0360–3016/5 - see front matter

doi:10.1016/j.ijrobp.2011.12.032

EDITORIAL

ARE THE RESULTS OF RTOG 0617 MYSTERIOUS?

James D. Cox, M.D.

'It is incumbent on the entire radiation oncology community to improve the planning and delivery of RT to avoid irradiating the normal lung and heart better than the standard techniques do today, so that dose-intensified schedules of RT can be safely administered"

Cox J, IJROBP 2012; 82(3): 1042-1044

Integrated approaches in Locally Advanced Non-Small Cell Lung Cancer

In patients with locally advanced NSCLC *concomitant chemo-radiotherapy* is the standard of care.

In patients with good performance status with bulky disease, *induction chemotherpy* should be considered primarily for cytoreductive intent.

Higher biological tumor doses could result in better survival.

Improvement in local control represents a principal goal in designing new strategies to treat NSCLC

Radiotherapy and Oncology 101 (2011) 237-239

Contents lists available at SciVerse ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Editorial

Radiotherapy with curative intent for lung cancer: A continuing success story

Dirk De Ruysscher*, Wouter van Elmpt, Philippe Lambin

Department of Radiation Oncology, Maastricht University Medical Centre, The Netherlands

"The dynamism of lung cancer research deals with important aspects where significant gains can be expected in the coming years"

