

COMPARATIVE EFFECTIVENESS RESE IN PRACTICE: SCIENCE, MARKET, IN PRACTICE: SCIENCE, MARKELL APPROPRIATENESS IN ONCOLOGY

Brescia - October 5th, 2012 Hi-tech treatments: results, perspectives, suggestions for future comparative effectiveness studies **Brain metastases**

Michela Buglione Cattedra di Radioterapia – Università di Brescia

The trail.....

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metastases
- ✓ Modality of hypo-fractionation: stereotactic RT alone;
 WB + stereotactic boost;
 surgery + stereotactic boost;
 concomitant boost.
- ✓ Different techniques means different results, toxicities, costs?
- ✓ Future......

✓ Brain metastases: background, prognostic factors and treatment

Brain metastases - background

- ✓ 20% to 40% of cancer patients
- ✓98,000 to 170,000 new cases are diagnosed in the United States each year
- √ the patients require/expect treatment

Mehta M et al Neoplasms of the central nervous system. In: DeVita VT Jr et al: Cancer: Principles and Practice of Oncology. 9th ed. 2011

✓ Prognostic indices: RPA

RPA	Karnofsky Performance Status	Median OS (mo)
1	KPS ≥ 70; age < 65; Controlled primary disease, no extracranial metastases	7.1; 13.5 for single met, 6.0 multiple mets
11	KPS >=70, age>65, progressive primary tumour, other mts	4.2 8.1 for single met 4.1 multiple mets
Ш	RPA 2 and KPS >70	2.3

Brain metastases - prognostic factors

✓ Prognostic indices: GPA

	0 points	0.5 points	1 point	
Age	>60	50-59	<50	
KPS	<70	70-80	90-100	
N° mets	>3	2-3	1	
Extracranial mets	Present		absent	

GPA score	Median OS (mo)
0-1	2.6
1.5-2.5	3.8
3,0	6.9
3.5-4	11

[✓] Possible role of primary site of disease

Brain metastases - prognostic factors

✓ Prognostic ir

Tab 4. Univariate an RPA class

N° p Age NPS-MI KPS Histol Other I N° brain Thera RT D

KPS = Karnofsky | Research Council; R

Tab 5. Multivariate analysis of overall survival: statistical significance of the different variables in each RPA class

All cases		RPA cl	lass 1		RPA class 2			
Variable	p	RR	Variable	р	RR	variable	Р	RR
Age	0.031		Other mets	ns		Dose	0.000	
< 65		1	Yes		1	30 Gy		1
>65		1.325	no		0.568	20 G y		2.088
KPS	0.004		KPS	0.000		Histology	0.002	
>= 90		1	>=90		1	Breast		1
< 90 >/= 70		1.824	< 90 >/= 70		3.032	Lung (adenoca)		0.798
<70		1.466	<70	nopts		Lung (SCLC)		0.817
RPA class	0.019		N° brain mets	0.001		Lung (squamo)		2.136
1		1	>=1 <=3		1	Renal		0.248
2		1.236	>3		1.534	Melanoma		1.609
3		2.502	Therapy	ns		Other		1.256
N° brain mets	0.001		Surgery + RT					
>=1 <=3		1	RT					
>3		1.266	Dose	0.003				
Therapy	0.021		30 Gy		1			
Surgery + RT		1	20 Gy		2.385			
RT		1.640	Histology	0.030				
Dose	0.001		Breast		1			
30 Gy		1	Lung (adenoca)		1.11			
20 Gy		1.589	Lung (SCLC)		1.976			
Histology	0.004		Lung (squamo)		1.073			
Breast		1	Renal		0.557			
Lung (adenoca)		1.043	Melanoma		5.643			
Lung (SCLC)		1.064	Other		1.19			
Lung (squamo)		1.423						
Renal		0.574						
Melanoma		2.419						
Other		1.454						

Brain metastases - treatment

- ✓ surgery
- √ whole brain radiotherapy
- ✓ stereotactic radiotherapy /radiosurgery

Brain metastases - treatment

- ✓ Brain metastases: background prognostic factors and treatment
- ✓ The basis of hypo-fractionation in brain metastases

The basis of hypo-fractionation

✓ Hypo-fractionated/single fraction RT has a growing role in the treatment of single/<3 brain metastases
</p>

Systematic review

Dose–effect relation in stereotactic radiotherapy for brain metastases. A systematic review

Ruud Wiggenraad ^{a,*}, Antoinette Verbeek-de Kanter ^a, Henk B. Kal ^b, Martin Taphoorn ^{c,e}, Thomas Vissers ^d, Henk Struikmans ^a

*Radiotherapy Centre West, The Hague, The Netherlands; baassluis; Department of Neurology; Medical Library, Medical Center Haaglanden, The Hague, The Netherlands Department of Neurology, VU Medical Center, Amsterdam, The Netherlands

- ✓ 6 mo local control rate is higher than 80% in hypo-frationated and single fraction
- √ 12 mo LCR >80% with a single dose >20 Gy

>70% with FSRT

>60% SRT >18Gy

<50% SRT 15 Gy

✓ BED12 of at least 40 Gy is necessary \rightarrow LCR 12mo of >70%

The basis of hypo-fractionation

- ✓ Different methods of dose prescription and isodose specification not related to tumor volume but to estimated late radiation toxicity rate
- ✓ Wide range of dose levels
 - → <u>different</u> algorithms to compare different prescription methods;
 - → RTOG 90-05 : disease without margin

50-90% isodose line (encompassing the lesion)

24 Gy → >/=20mm

18 Gy → 21-31 mm

15 Gy → 31-40 mm

- ✓ Conformity index → quantitatively evaluate the dose conformity.
- ✓ The choices of CI and reference isodose are left to the planners.
- ✓ Differences in methods to evaluate the target coverage using different conformity indices

CI: conformity index
PIV: prescription
isodose volume
PITV: ratio of
prescription isodose
volume/target
volume
TVPIV: the volume of
the target receiving
the prescription dose;
TVR: treatment
volume ratio;
TC: target coverage
TV: target volume

Ohtakara k et al Br J of Radiol 2012, (85): e223

- ✓ Brain metastases: background prognostic factors and treatment
- ✓ The basis of hypo-fractionation in brain metastases
- ✓ Hypo-fractionation modality : stereotactic RT alone;

WB + stereotactic boost;

surgery + stereotactic boost;

concomitant boost.

✓ Stereotactic RT alone vs WB + stereotactic boost

Ok, but...

Author Treatment		Dose	LC/OS	
Aoyama JAMA 2006	RS	22-25Gy/18-20Gy	72.5%/ns	
	RS+WB	Dose <30% + 30Gy in 10-12 #	88.7 %/ns	
Chang	RS	18-12 Gy	67.7%/15.2mo	
Lancet oncol 2009	RS+WB	18-12 Gy + 30 Gy in 12 #	100 %/5.7 mo	
Mueller and Kocher	RS o S	20 Gy	67.6%/ns	
JCO 2009 and 2011	RS o S + WB	20 Gy + 30 Gy in 10 #	82.4 %/ns	
Muacevic J	RS	17-27 Gy	74.2%/ns	
Neurooncol 2008	RS+WB	14-27 Gy + 40 Gy in 20 #	97 %/ns	

Scoccianti S. and Ricardi U. Radioth & Oncol 2012, (102): 168

- ✓ WB + stereotactic boost vs WB alone
- multiple metastases (>4) → no better survival
- in patients with 1-4 metastases → no better survival but better local control, better functional outcome and decreased steroid requirement
- in patients with **RPA 1**; 1 metastasis → better local control and better survival

- √ Hypofractionated/SRS RT alone
- 24 Gy in 3 #
- LC \rightarrow 75% at 9 mo and 45% at 24 mo

Marchetti et al Neurol Sci 2011, 32 (3): 393

✓ Surgery + stereotactic boost

Hartford AC et al IJROBP in press 2012

```
- LC \rightarrow 1y 85.5%; 2 y 66.9%;
```

-OS
$$\rightarrow$$
 1y 52.5%; 2y 31.7%; 15.3Gy (range 10.75-23.5Gy);

- size < 2 cm \rightarrow better LC;

lower brain recurrence;

lower intracranial recurrence;

> time to WB

Robbins JR et al Neurosurgery in press 2012

-LC → 1y 81.4%; 2 y 75.7%; median OS 12.1 mo; median marginal dose 16 Gy

Critical Review

Radiosurgery to the Postoperative Surgical Cavity: Who Needs Evidence?

David Roberge, M.D.,*,† Ian Parney, M.D., Ph.D.,‡ and Paul D. Brown, M.D.§

Prospective trials needed!!

*Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada; Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada; Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN; and Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX

✓ Concomitant WB + boost

Lagerwaard et al IJROBP 2009

- 1° experience in 2009
- 20 Gy/5# and 40 Gy in 5# → higher conformity index than WB>SRS

Rodrigues et al Radiother&Oncol 2011

- -20 Gy/5 and 40Gy/5 #
- 30 Gy/10 and 36-50 Gy/10 #
- multivariate → primary lung, systemic mets, low WHO PS, predictive of shorter OS;
- cumulative brain mets volume → LC

Original	Article
~	

Profession (n = 445) Radiation oncologist Neurologist Other	412 (92.6%)	al Practi al Conse		30 Gy in 10 daily fractions	20 Gy III	astases: Third and Symptom
Multidisciplinary meetings in the institution of practice for patients with brain metastas No Yes	ses (n = 438) 128 (29.2%) 310 (70.8%)		Alone With surgery With radiosurgery	41% 55% 48%	40% 19% 14%	

Radiosurgery dose prescription (survey questions 6-8)

Target size (cm)	15 Gy	18 Gy	20 Gy	22 Gy	24 Gy	Other	Total number of responses
<2 cm	8%	21%	28%	9%	13%	21%	321
2-3 cm	13%	44%	15%	5%	3%	20%	319
3–4 cm	47%	16%	7%	2%	4%	24%	310

Treatment options for single brain metastasis (survey questions 14–17)

Survey question number (n)	Surgery alone	Radiosurgery alone	Surgery and WBRT	Radiosurgery and WBRT	WBRT	Surgery and radiation boost	Surgery, radiation boost, WBRT	Comfort measures only
14 (661)	7%	14%	40%	17%	5%	9%	8%	0%
15 (661)	12%	15%	37%	14%	6%	8%	8%	0%
16 (488)	1%	32%	1%	42%	23%	1%	0%	0%
17 (512)	8%	1%	56%	5%	11%	10%	9%	0%

Treatment options for initial management of multiple brain metastases (survey questions 20–22)

	Survey question number (n)		Radiosurgery and whole brain radiotherapy	Whole brain radiotherapy	
ı	20 (453)	14%	42%	44%	0%
	21 (449)	5%	7%	78%	10%
	22 (456)	1%	1%	40%	58%

Tsao MN et al Clinical Oncol 2012, 24: e81-92

	Original Arti	cle				_
Profession (n = 445) Radiation oncologist Neurologist Other	412 (92.6%) 1 (0.2%) 32 (7.2%)	al Practi al Conse		30 Gy in 10 daily fractions	20 Gy in 5 daily fractions	astases: Third and Symptom
Multidisciplinary meetings in the institution of practice for patients with brain metastas No	ses (n = 438) 128 (29.2%)		Alone With surgery With radiosurgery	41% 55% 48%	40% 19% 14%	

A survey of practice among more than 400 radiation oncologists confirms some practice patterns:

- 1. No selective high dose treatments for prognostic worse pts;
- 2. Larger use of SRS/FSRT in selected RPA 1, < 4 mets pts;
- 3. Addition of WB to SRS is favoured;
- 4. Mainly WB in pts with > 4 mets.

Treatment options for initial management of multiple bra metastases (survey questions 20—22)									
	Survey question number (n)		Radiosurgery and whole brain radiotherapy						
	20 (453)	14%	42%	44%	0%				
	21 (449)	5%	7%	78%	10%				
ı	22 (456)	1%	1%	40%	58%				

Tsao MN et al Clinical Oncol 2012, 24: e81-92

The trail.

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metastases
- ✓ Modality of hypo-fractionation : stereotactic RT alone;
 WB + stereotactic boost;
 surgery + stereotactic boost;
 concomitant boost.
- ✓ Different techniques means different results, toxicities, costs?

Different techniques.....

- ✓ Fixed-gantry angle IMRT 3D
- ✓ Dynamic conformal arc therapy (DCA) → multiple non-coplanar arcs
- ✓ Arc based IMRT
- ✓ Serial → HELICAL THOMOTHERAPY
- ✓ Intensity Modulated Arc Therapy → VMAT/Rapid Arc

Different results?....dosimetric/clinical evaluation

Author	Treatment	techniques	Observations	LC
Hazard LJ et al (rew) IJROBP 2009	SRS	DCA 3D GK CyberK Proton	 CI: if reportedcomparable → ? -3D: more dose homogeneity in TV - necessary a standardized method to choose prescription isodose 	NR
Penagaricano JA Radiation Oncol 2006	SRS	HT GK	-CI, TV coverage are comparable - min dose to PTV higher with GK - low-dose spillage volume is higher in HT	NR

√ concomitant WB+boost

- feasible only with HT or VMAT/Rapid Arc
- → no results in terms of local control between different techniques (Rodrigues G R&O 2011)

Different toxicity?.....

Author	Treatment	Techniques	Observations	Necrosis/nerologic
Hazard LJ et al (rew) IJROBP 2009	SRS	DCA 3D GammaKnife CyberK Proton	GK dose inhomogeneity in TV	Increased risk of complications (?)
Penagaricano JA Radiation Oncol 2006	SRS	HT GK	Low doses in HTNon-homogeneity dose in TV	Problems related to low-doses in HT?; Increased risk of complications (?)

√ concomitant WB+boost

- feasible only with HT or VMAT/Rapid Arc
- no published data

Author	Treatment	Techniques	Delivery time/immobilization	Costs
Hazard LJ et al (rew) IJROBP 2009	SRS	DCA 3D GammaKnife CyberK Proton	3D less time /NR	NR
Penagaricano JA Radiation Oncol 2006	SRS	HT GK	30-49 minutes 14-36 minutes / Non invasive (HT)	NR

√ concomitant WB+boost

- feasible only with HT or VMAT/Rapid Arc
- the problem of HT is the delivery time

Different costs?.....

OPEN ACCESS

HTA-Kurzfassung

Medizinische und gesundheitsökonomische Bewertung der Radiochirurgie zur Behandlung von Hirnmetastasen

Medical and health economic assessment of radiosurgery for the treatment of brain metastasis

- √ 1495 medical paper
- √ 15 meet inclusion criteria
- ✓ limited study quality
- 320 economic paper
- 5 eligible

The efficiency of the different equipments depends to a great extent on the number and the indications of the patients treated. If dedicated systems are used to their full capacity, there is some evidence for superior cost-effectiveness. If more treatment flexibility is required, adapted systems seem to be advantageous. However, equal treatment effectiveness is a necessary assumption for these conclusions.

Studies

focusing on the comparative effectiveness and cost-effectiveness of different treatment options and their combinations, especially for the German setting, are warranted.

Muller-Riemenschneider F et al GMS Health Tech Assessment 2009 Vol 5

✓ WB+boost → SIB or sequential; VMAT/Rapid Arc vs HT

Objective:

- ✓ Dosimetric comparision
- ✓ OAR
- √ delivery time

In general:

- ✓ PTV coverage of metastases is better with sequential boost (the planning is concentrated on the lesion)
- ✓ no great differences between VMAT and tomotherapy;
- ✓ Organ at risk respect is better and simpler with the concomitant boost rather with sequential

	AV	MAT-SIB		B VMAT-SRS		C TOMO-SIB			D TOMO-SRS				
	HI		0.2.2		~:=								
1	0,07	- ⊩	- HI are more or less the same										
2	0,09	ے ا	1 -	hot	tor	raci	ılta y	i+k	, шт	_CD	2	5	
3	0,16	∏ - €	- CI → better results with HT-SRS										
4	0,13			wo	rse	resu	ılts v	with		1AT-	SRS		
4	0,12	1,/1	0,69	0,04	0,69	NA	0,06	1,62	0,37	0,06	1,12	0,50	
5	0,06	3,84	0,22	0,02	4,83	0,51	0,02	1,83	0,46	0,04	1,48	0,46	
6	0,05	2,08	0,73	0,06	6,67	0,36	0,04	1,69	0,41	0,04	1,56	0,47	
media	0,10	2,99	0,60	0,04	3,64	0,35	0,04	2,14	0,36	0,08	2,05	0,61	

						brains	camera	camara	n.ott	n.ott.	
	 hrain-	PTV boo	ost		chiasma			l	dx	SX	
	V35	V40	V45	V12	CITASITA		4110 421	4110 521	C272	571	
	(%)	(%)	(%)		Dmax	Dmax	Dmax	Dmax	D10	D10	
					1 B						
A VMAT-SIB	2,95	1,03	0,04		34,04		4,77	4,53	27,28	5,56	
B VMAT-SRS				0,00	30,15	30,43					
C TOMO-SIB	2,35	0,85	0,00		30,51	31,41			29,54	29,83	
D TOMO-SRS				9,01	30,20	30,47	2,49	2,70	30,07	29,89	
					2 N	IS					
A VMAT-SIB	3,56	1,14	0,10		34,16	31,36	4,81	5,31	28,01	25,14	
B VMAT-SRS				36,25	30,54	30,84	3,22	4,37	30,71	30,69	
C TOMO-SIB	12,63	5,85	0,13		30,37	31,91	3,66	3,89	29,35	29,39	
D TOMO-SRS											
		_	All	con	strai	ns a	re r	espe	ecte	d	
A VMAT-SIB	3,43							•			
B VMAT-SRS		_	Bet	ter	"bra	in" :	avoi	dand	ce v	vith	SIB
C TOMO-SIB	14,39	5									
D TOMO-SRS				10,65	30,42	30,91	2,61	2,68	29,55	30,21	
					4 D	G					
A VMAT-SIB	16,88	5,64	0,79		34,76	38,58	2,74	3,03	22,01	23,19	
B VMAT-SRS				26,41	38,89	42,87	6,31	3,75	36,29	33,33	
C TOMO-SIB	10,68	3,36	0,00		30,50	31,53	3,19	3,04	30,27	30,19	
D TOMO-SRS				36,20	32,42	35,25	2,84	2,41	32,05	31,26	
					5 D	\mathbf{V}					
A VMAT-SIB	3,58	1,34	0,07		32,53	33,93	4,13	4,4	28,41	28,39	
B VMAT-SRS				87,82	38,45	41,78	7,84	3,60	37,37	30,87	
C TOMO-SIB	4,32	1,55	1 0 0 0		1 20 14				20.00	1 20 26	
D TOMO-SRS		1,55	0,00		30,14	30,26		3,71	29,06	28,26	
D TOMO-SKS		1,33	0,00	16,35					29,06 31,62		
D TOMO-SKS		1,33	0,00	16,35		35,68					
A VMAT-SIB	2,58				32,57	35,68	3,98	3,86		31,38	
	2,58				32,57 6 Z 31,81	35,68 L 33,00	3,98	3,86	31,62	31,38	
A VMAT-SIB	2,58	1,06	0,06	59,56	32,57 6 Z 31,81	35,68 L 33,00 30,61	3,98 3,14 2,44	3,86	31,62 29,22	31,38	

OAR

	Delivery time (seconds)									
	1	2	3	4	5	6	media			
A VMAT-SIB	277	193	168	195	237	235	218			
B VMAT-SRS	386	419	375	543	578	549	475			
C TOMO-SIB	980	247	409	480	485	401	500			
D TOMO-										
SRS	1150	1266	1188	2712	1222	1051	1432			

	Delivery time (seconds)									
	1	2	3	4	5	6	media			
A VMAT-SIB	277	193	168	195	237	235	218			
B VMAT-SRS	386	419	375	543	578	549	475			
C TOMO-SIB	980	247	409	480	485	401	500			
D TOMO-										
SRS	1150	1266	1188	2712	1222	1051	1432			

-Not yet clinical results

Next step → clinical analysis on higher number of patients

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metastases
- ✓ Modality of hypo-fractionation: stereotactic RT alone;
 WB + stereotactic boost;
 surgery + stereotactic boost;
 concomitant boost.
- ✓ Different techniques means different results, toxicities, costs?

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metastases
- ✓ Modality of hypo-fractionation: stereotactic RT alone; WB + stereotactic boost; surgery + stereotactic boost; concomitant boost.
- ✓ Different techniques means different results?
- ✓ Different techniques means different toxicities?

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metasta.

SRS and SFRT
enhance local
control; problem:
results
comparision

- ✓ Modality of hypo-fractionation: stereotactic RT alone; WB + stereotactic boost; surgery + stereotactic boost; concomitant boost.
- ✓ Different techniques means different results?
- ✓ Different techniques means different toxicities?

concomitant boost.

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metasta.
- ✓ Modality of hypo-fractionation: stereotactic RT alone;

 WB + stereotactic boost;

 surgery + stereotactic boost;
- ✓ Different techniques means different results?
- ✓ Different techniques means different toxicities?

- Chose the right treatment for the right patient

SRS and SFRT
enhance local
control; problem:
results
comparision

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metasta.

SRS and SFRT
enhance local
control; problem:
results
comparision

✓ Modality of hypo-fractionation: stereotactic RT alone;

WB + stereotactic boost;

surgery + stereota is boost;

concomitant boost.

It doesn't seem

- Different techniques means different results?
- ✓ Different techniques means different toxicities?

Chose the right treatment for the right patient

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metasta.
- ✓ Modality of hypo-fractionation: stereotactic RT alone;

It doesn't seem

Probably yes...? eota is boost; concomitant boost.

- ✓ Different techniques means different results?
- ✓ Different techniques means different toxicities?

- Chose the right treatment for the right patient

SRS and SFRT
enhance local
control; problem:
results
comparision

- ✓ Brain metastases: background and treatment
- ✓ The basis of hypo-fractionation in brain metasta.
- ✓ Modality of hypo-fractionation: stereotactic RT alone;

It doesn't seem

- ✓ Different techniques
- ✓ Different technique
- ✓ Future......

Probably yes entartic boost;

concomitant boost.

Solve clinical problem

- → prospective trials
- are needed to
- evaluate

toxicity/neurotoxicity

- @ DVH
- clinical advantage

Chose the right treatment for the right patient

SRS and **SFRT**

enhance local

results

control; problem:

comparision

Neurocognitive toxicity

Valutazioni neuro-cognitive e q trattati con radioterapia per r clinico osservazionale multicei

Studio osservazionale - prospettico

Centri promotori:

Cattedra di Radioterapia – Università d dott.ssa Michela Buglione

Radioterapia – Istituto Neurologico <u>Bes</u> Dott.ssa Ida Milanesi

Data center:

Cattedra di Radioterapia – Università d Dott.ssa Michela Buglione

buglione@med.unibs.it

Clinical advantages

- ✓ trials needed to verify clinical advantages
- ✓ not considering/considering differences in techniques to verify better/worse results

Thanks for Your attention !!!

