

II° CONGRESSO Gruppo Interregionale AIRO Piemonte-Liguria Valle d'Aosta

"Aspetti clinici e tecnici della radioterapia nei tumori del colon-retto"

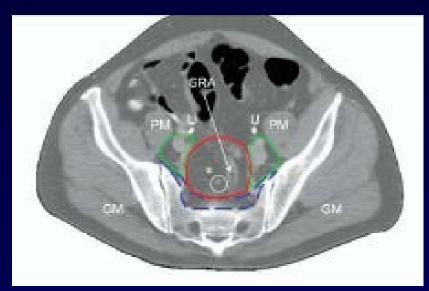
> 8 ottobre 2011 Castello di Grinzane Cavour

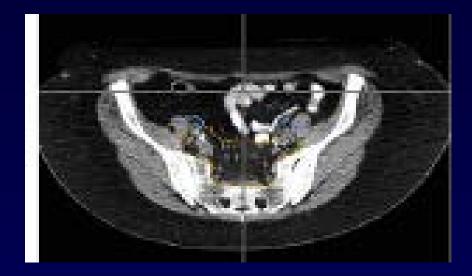
Casi Clinici

<u>Giuseppe Malinverni</u> s.c. di RADIOTERAPIA A.O "ORDINE MAURIZIANO" Osp. Mauriziano Umberto I° TORINO

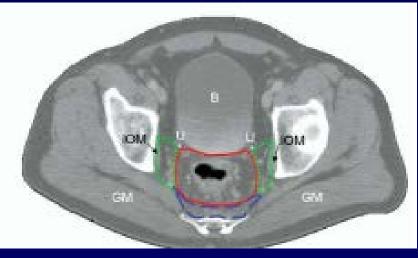
Presidenti Onorari Dott. G. Marchetti Dott.ssa F. Ozzello

What Is the Role for the Circumferential Margin in the Modern Treatment of Rectal Cancer? JOURNAL OF CLINICAL ONCOLOGY

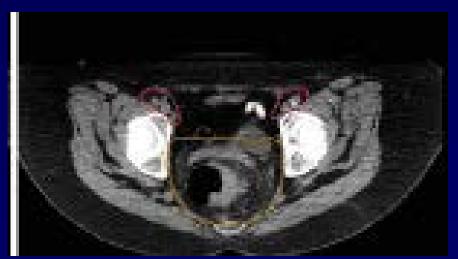

Iris D. Nagtegaal and Phil Quirke


VOLUME 26 · NUMBER 2 · JANUARY 10 2008

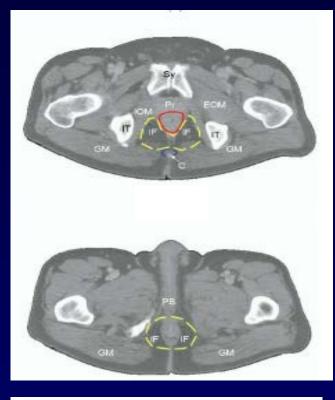
Quirke 1986 (n = 52) 80% v 0% Ng 1993 (n = 80) Cawthorn 1990 (n = 167) 9% v 8% Adam 1994 (n = 141) 24% v 74% Ng 1993 (n = 80) 60% v 17% de Haas-Kock 1996 (n = 253) 85% v 84% Adam 1994 (n = 141) 78% v 10% Hall 1998 (n = 152) 56% v 69% de Haas-Kock 1996 (n = 253) 29% v 8% Ueno 2001 (n = 44) Hall 1998 (n = 152) 15% v 11% Nagtegaal 2002 (n = 656) 68% v 90% Nagtegaal 2002 (n = 656) 16% v 6% Birbeck 2002 (n = 586) 40% v 79% Birbeck 2002 (n = 586) 38% v 10% Wibe 2002 (n = 686) Wibe 2004 (n = 2,153) Ueno 2003 (n = 44) 0% v 39% Sebag-Montef. 2006 (n = 676) 23% v 10% Wibe 2004 (n = 2,100) 0.49 (0.34 to 0.72) No neoadjuvant therapy (n = 4,899) No neoadjuvant therapy (n = 4,742) 0.61 (0.48 to 0.70) Bouzourene 2003 (n = 104) 26% v 35% Marijnen 2002 (n = 658) 9% v 1% Bouzourene 2003 (n = 104) 26% v 4% Wheeler 2004 (n = 63) 36% v 83% Luna Perez 2005 (n = 61) 42% v 81% Wheeler 2004 (n = 63) 55% v 6% Mawdsley 2005 (n = 150) 52% v 62% Luna Perez 2005 (n = 61) 16% v 8% Sebag-Montef.2005b (n = 81) 33% v 80% Mawdsley 2005 (n = 150) 62% v 1% Klaassen 2006 (n = 201) 40% v 74% Sebag-Montef. 2005a (n = 27) 60% v 9% Neoadjuvant therapy (n = 660) 0.61 (0.40 to 0.82) Sebag-Montef.2005c (n = 541) 41% v 7% Sebag-Montef.2006 (n = 674) 16% v 3% ___ Quirke# 2005 (n = 274) 27% v 68% Klaassen 2006 (n = 201) 53% v 10% Das* 2006 (n = 470) Neoadjuvant therapy (n = 2,479) 0.16 (0.06 to 0.27) Total (n = 6,146) 0.58 (0.44 to 0.79) Das* 2006 (n = 470) **Poor survival** 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Quirke# 2005 (n = 274) 23% v 9% 0.37 (0.23 to 0.58) Total (n = 8,122) Poor Survival With CRM+ Better Survival With CRM+ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 No Difference Less LR With CRM+ More LR With CRM+ ÷. More local relapse

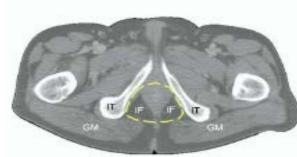

No Difference

Mesoretto: limite superiore

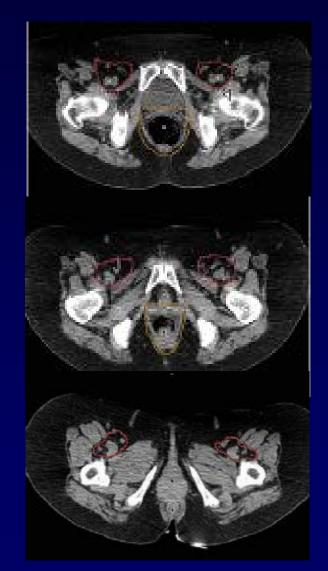


Mesoretto: limite anteriore

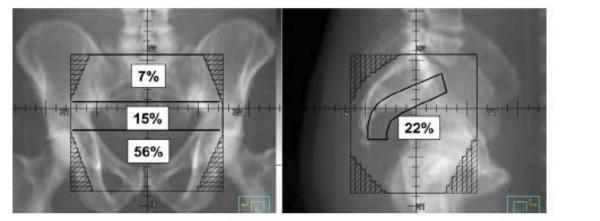

Roels S. IJROBP 2006



Myerson RJ. IJROBP 2008


limite inferiore

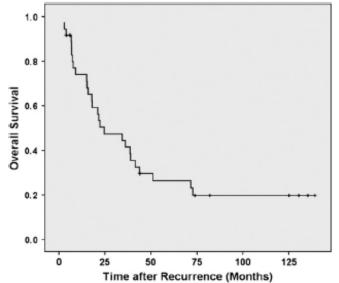
VS


Roels S. IJROBP 2006

Myerson RJ. IJROBP 2008

PATTERNS OF LOCOREGIONAL RECURRENCE AFTER SURGERY AND RADIOTHERAPY OR CHEMORADIATION FOR RECTAL CANCER

TSE-KUAN YU, M.D., PH.D.,* PRIYA R. BHOSALE, M.D.,[†] CHRISTOPHER H. CRANE, M.D.,*



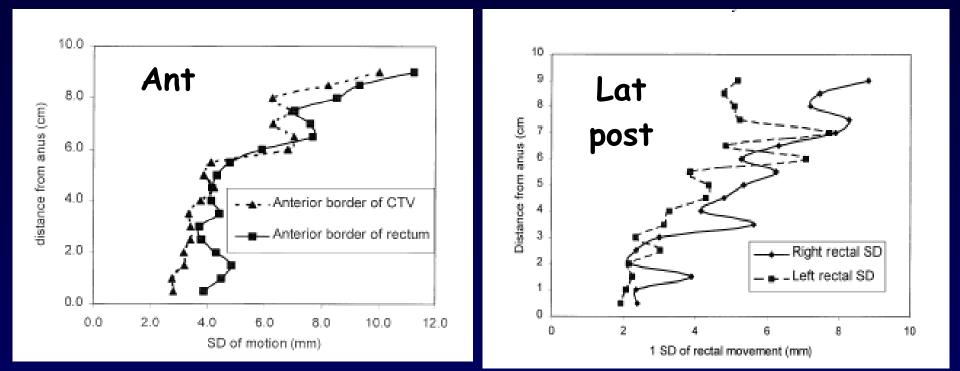
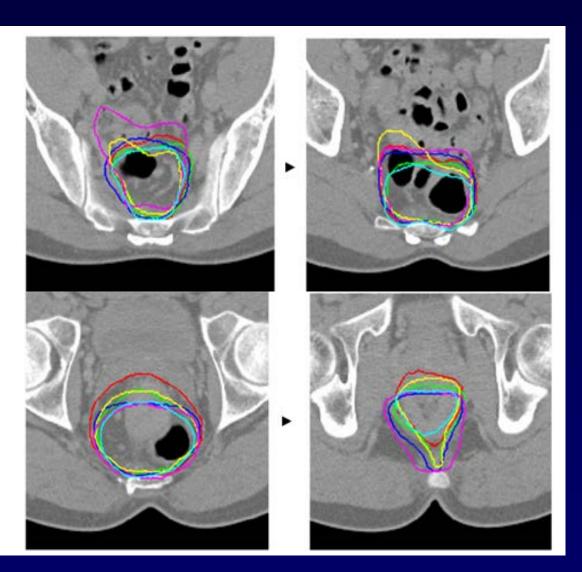

There were only a limited number of marginal and out-of-field failures, indicating that standard pelvic RT fields are appropriate for most rectal cancer patients.

Fig. 3. Kaplan-Meier estimates of overall survival after locoregional recurrence.

Because a large proportion of locoregional failures occurred within the radiotherapy field in the low pelvic and presacral regions, consideration should be given to including the low pelvic and presacral regions in the **radiotherapy boost field**, especially in patients at high risk of locoregional recurrence.

Organ motion

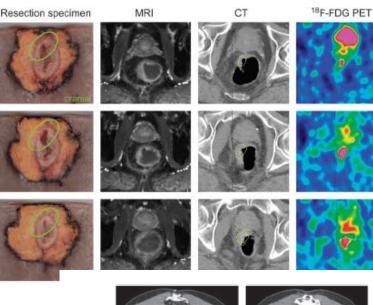

evaluation interfraction mesorectum motion

Nuyttens JJ. IJROBP 2002

Mesorectum delineation in one patient

Bony anatomy registration of repeated CT 's to CT 1

> red = CT1 green= CT 2 dark blue= CT 3 yellow= CT 4 magenta =CT 5 light blue = CT 6


IDENTIFICAZIONE DEI PAZIENTI A RISCHIO

IMAGING & RESPONSE

PET-Based Treatment Planning in Radiotherapy: A New Standard?

Vincent Grégoire^{1,2}, Karin Haustermans³, Xavier Geets², Sarah Roels³, and Max Lonneux^{2,4}

FIGURE 4. Correlation of resection specimen with different imaging modalities for patient with rectal cancer. (Column 1) Macroscopic section through rectal cancer resection specimen from top to bottom. (Columns 2-4) Correlating imaging studies: MRI, CT, and ¹⁸F-FDG PET, respectively (all performed in prone position). This figure illustrates how molecular imaging modalities can be validated by correlation with pathologic specimen.

SPECIFICITA'

- lesione primitiva (T) LIMITE - MTS linfonodali (N)

Kantorowa, J Nucl Med 2003 Mukai M, Oncol Rep 2000 Ciernik IF IJROBP 2005

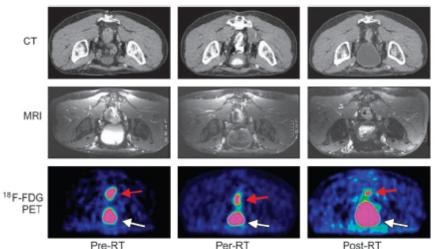
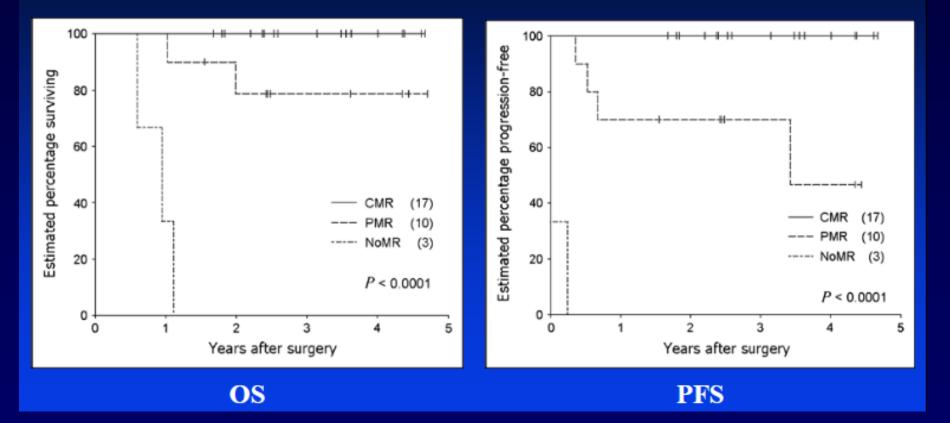


FIGURE 3. Imaging studies performed before and during course of treatment for patient with rectal cancer. (Upper row) Images from CT performed in prone position before chemoradiotherapy (RT), during chemoradiotherapy, and at time of surgery. (Middle row) Images from MRI performed in supine position before chemoradiotherapy, during chemoradiotherapy, and at time of surgery. (Lower row) Images from 18F-FDG PET performed before chemoradiotherapy, during chemoradiotherapy, and at time of surgery. Tumor (red arrows) shows high level of uptake of 18F-FDG before start of treatment; 18F-FDG signal decreases

during treatment and is lowest at time of surgery. ¹⁸F-FDG PET can help in delineating GTV before treatment and in replanning radiation treatment during course of treatment. White arrows indicate urinary bladder.

Table 1 Relevant studies of PET PET in treatment response

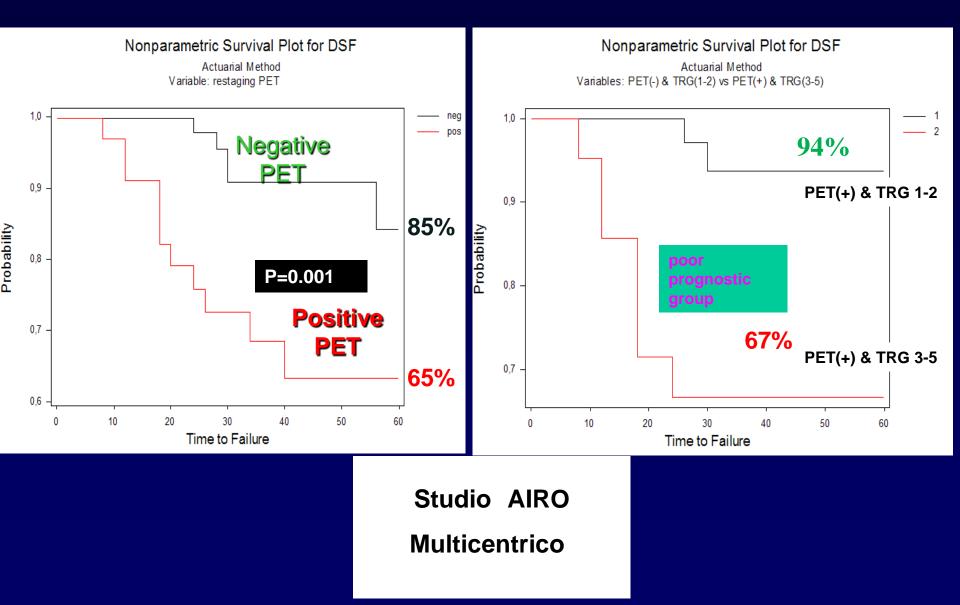
Study	n	Therapy	Timing	Response criteria	Outcome measure	Result	P
Engenhart et al ^[7] (1992)	21	RT	8-9 wk pc	ΔSUV	LC	SUV normalization; PPV 20%; NPV 67%	
Schiepers <i>et al</i> ^[14] (1999)	9	RT	2-3 wk pc	TuGluc	Histo, cell kinetics	Decreased 138 nmol/mL per min after RT	0.008
Guillem <i>et al</i> ^[11] (2000)	15	CRT	4-5 wk pc	ΔSUV, VR, δTLG	Histo	VR PPV 60%	
Oku et al ^[9] (2002)	40	RT	3-5 wk pc	SUV	Recurrence	SUV < 3.2	< 0.05
Amthauer <i>et al</i> ^[15] (2004)	20	CRT + H	2-4 wk pc	ΔSUV	Histo	36% decrease SUV PPV 93%; NPV 100%	0.003
Calvo et al ^[16] (2004)	25	CRT	4-5 wk pc	ΔSUV	Histo	2 vs 2.7 decrease SUV	NS
Guillem et al ^[17] (2004)	15	CRT	4-5 wk pc	ΔSUV, VR, δTLG	Recurrence, OS, RFS	63% decrease SUV	0.08
						70% decrease TLG	0.03
Denecke <i>ct al</i> ^[18] (2005)	23	CRT + H	2-4 wk pc	ΔSUV	Histo	36% decrease SUV PPV 77%; NPV 100%	0.002
Konski et al ^[19] (2005)	20	CRT	3-4 wk pc	ΔSUV	Histo	52% vs 75% decrease SUV	NS
Cascini et al ^[20] (2006)	33	CRT	12 d pi	ΔSUV	Histo	22% vs 63% decrease SUV	< 0.0001
Capirci et al ^[13] (2006)	88	CRT	5-6 wk pc	Negative PET	5 yr OS and DFS	91% vs 72%	0.024
						81% vs 62%	0.003
Kalff et al ^[12] (2006)	34	CRT	7-43 d pc	VR	O5	100% vs 79%	< 0.0001
					PFS	100% vs 47%	< 0.0001
Capirci <i>et al</i> ^[21] (2007)	45	CRT	5-6 wk pc	∆SUV	Histo	66% decrease SUV PPV 77%; NPV 89%	0.0015
Melton <i>et al</i> ^[22] (2007)	21	CRT	4-5 wk pc	ΔSUV, VR, δTLG	Histo	70% decrease SUV PPV 58%; NPV 100%	< 0.001
Kristiansen et al ^[23] (2008)	30	CRT	7 wk pc	VR	Histo	PPV 83%; NPV 33%	NS
Siegel <i>ct al</i> ^[8] (2008)	32	RT (short)	7-8 d pi	ΔSUV	Histo	40% decrease SUV	NS
Nakagawa et al ^[10] (2008)	59	RT	2-3 wk pc	SUV	O5	SUV < 5: 95 vs 42 mo,	0.042
			-		MS	70% vs 44%	
Vliegen <i>et al</i> ^[24] (2008)	20	CRT	4-6 wk pc	ΔSUV	Histo	83% vs 59% decrease SUV	0.025
Janssen <i>et al</i> ^[25] (2009)	30	CRT	2 wk pc	ΔSUV	Histo	43% decrease SUV	
						PPV 91%; NPV 82%	
Konski <i>et al</i> ^[26] (2009)	53	CRT	3-4 wk pc	ΔSUV	Histo	67% vs 55% decrease SUV	NS
Rosenberg <i>et al</i> ^[27] (2009)	30	CRT	pc	∆SUV	Histo	66% vs 48% decrease SUV PPV 83%; NPV 64%	0.040


PET in treatment response

FDG-PET Response Assessment: Neoadjuvant Chemoradiation of Rectal Cancer

- 30 patients: PET before and 26 ± 9 d after chemoradiation, followed by surgery
- PET response assessed qualitiatively
 - -CMR 17 (5 with CRp)
 - -PMR 10 (1 with Crp)
 - NoMR 3

CR by CT or MRI in only 5/24

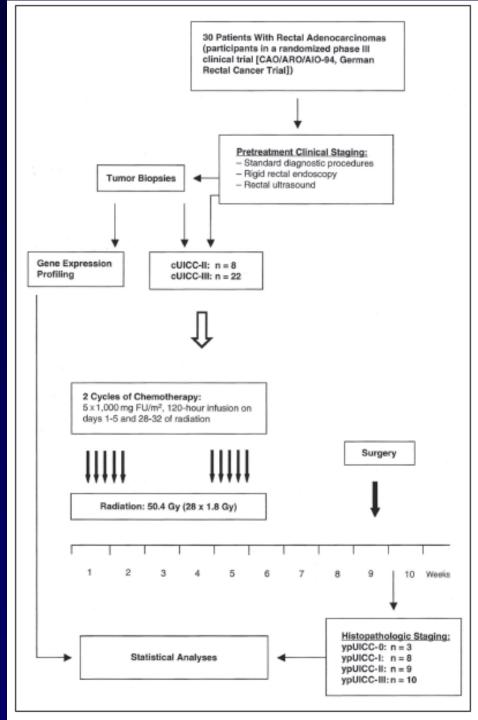

FDG-PET Response Assessment: Neoadjuvant Chemoradiation of Rectal Cancer

Kalff et al. J Nucl Med 2006

Restaging PET vs 5-yr DFS

PET E TRG vs 5-yr DFS

VOLUME 23 · NUMBER 9 · MARCH 20 2005


JOURNAL OF CLINICAL ONCOLOGY

Effectiveness of Gene Expression Profiling For Response Prediction of Rectal Adenocarcinoma to Preoperative Chemoradiotherapy

TS gene expression levels may have significant prognostic significance for patients with stage II and III rectal carcinoma after neoadjuvant chemoradiotherapy.

These parameters could be incorporated as part of the management of the patient with rectal cancer. to identify group of patients at highest risk of recurrence.

It may be that it is in this group that other therapies may have a more beneficial effect.

