

RT in Hodgkin Lymphoma Lesser is better?

Philip Poortmans, M.D. Ph.D. Radiation oncologist Tilburg, The Netherlands

Kracht van kennis. Kracht van leven.

Radiation dose in Hodgkin Lymphoma

- Introduction
- Current evidence
- Guidelines

Early stage Hodgkin Lymphoma The EORTC experience Treatment failure 1.0 Cumulative Probability 0.8 **H1** 0.6 **H2 H5** 0.4

Radiation dose in Hodgkin Lymphoma

- Introduction
- <u>Current knowledge & evidence</u>
- Guidelines

Dose-response curve Hodgkin's lymphoma (Fletcher & Shukovsky 1975)

Dose-response curves Hodgkin's lymphoma (Vijayakumar & Myrianthopoulos 1992)

Radiotherapy & cell kill

	nr cells	90% cure if
 Subclinical 	0 - 10 ⁸	20 Gy
• 1-5 cm	10 ⁹ - 10 ¹⁰	28 Gy
• 6-10 cm	10 ¹¹ - 10 ¹³	34 Gy

→ 2 Gy kills about 80% of the cells

Radiotherapy & cell kill

- 2 Gy → 20% residual cells <1 cells
 - 4 Gy → 4% residual cells
 - 20 Gy → 10⁻⁵ residual cells
 - 30 Gy → 3.10⁻⁹ log residual cells
 - 36 Gy → 3.10⁻¹¹ log residual cells
 - 40 Gy → 10⁻¹² log residual cells

- 2.5 cells
 - 10⁴ cells
- 3.10⁷ cells
- 3.10⁹ cells
 - 10¹¹ cells

Radiotherapy & the target

Acceptable shift

Radiotherapy & the target

Radiotherapy & the target

$GTV \rightarrow CTV \rightarrow PTV \leftarrow \rightarrow$ standard fields

- GTV shrinks during treatment
- Patient set-up variation
- Movement internal structures

this & high dose com-

pensates missing GTV

EORTC H9F trial early stage "Favourable" Hodgkin's lymphoma

→ 0 Gy treatment arm preliminary closed

EORTC H3 - 4 trial stages III / IV Hodgkin's lymphoma

➔ The role of IF-RT

→ in stage III and IV HD

→ after MOPP/ABV chemotherapy

EORTC H3 - 4 trial 1989 - 2000 MOPP/ABV x 4 CR Failure PR

Advanced stage Hodgkin L H34 trial: randomised pts (n=333) Relapse free survival

Advanced stage Hodgkin L H34 trial: all pts (n=736) Event free survival

Advanced stage Hodgkin L H34 trial Conclusions

After CR:

➔ IF-RT (24 Gy) does not improve outcome after 6-8 cycles MOPP/ABV

After PR:

➔ IF-RT (36 Gy) results in the same excellent RFS, EFS and OS as in CR patients

HD10: Investigating reduction of CMT intensity in early favorable HL. Interim analysis of a randomized GHSG trial.

JCO, 2005 ASCO Annual Meeting 2005: abstract 6506

® 4 cycles vs. 2 cycles of ABVD® 30 Gy IF vs. 20 Gy IF

Endpoint = freedom from treatment failure (FFTF).

After 2 years FFTF = 96.6% with no statistical differences.

Conclusions: Further analysis will show if these promising interim results will allow to reduce further therapy intensity.

HD11: Intensification of chemotherapy and reduction of radiation dose in early unfavorable HL. Interim analysis of a randomized GHSG trial.

Blood ASH Annual Meeting 2005: abstract 816

® 4 of ABVD vs BEACOPP® 30 Gy IF vs. 20 Gy IF

Endpoint = freedom from treatment failure (FFTF).

After 3 years FFTF = 87% with no statistical differences.

Conclusions: Further analysis needed but more relapses in 20 Gy RT arms.

Absolute excess mortality for various causes of death over time Aleman et al., JCO 2003; 21(18):3431

Radiotherapy & the target Strong advices

- Avoid other risk factors!!!
 - Smoking
 - Obesity
 - Hypertension
 - . .
- Do not overtreat your patients
 - Dose
 - Volume

GHSG = > 500 participating centers; > 11,000 patients

Central RT reference center from 1978 on for QA programs

- 1. Central prospective RT review;
- 2. Retrospective analysis of the RT;
- 3. Multidisciplinary HD12 panel;
- 4. Initiation and integration of a teleradiotherapy network.

Results:

- Major deviations of RT portals and dose = unfavorable prognostic factors.
- Corrections of fields in 49% for early stages and 67% for intermediate stages.
- Significant impact on correctness of stage definition, allocation to treatment groups and on the extension of the IF treatment volume.

Current procedures:

- Central prospective review of all diagnostic imaging by expert radiation oncologists → control disease extension & define the IF treatment volume.
- Participants are trained on the definition of IF-RT during workshops (GHSG & DEGRO meetings).
- Advanced stages: multidisciplinary panel evaluates treatment response to chemotherapy → patients with poor response receive additional RT based on panel's recommendation.
- Teleradiotherapy improves dialogue between central RT reference center and study participants.

- Favourable early stage
- EF alone

Center			
	Arm A, % (n = 190)	Arm B, % (n = 186)	
Technical (T)	2	6	
Volume too large (V+)	2	1	
Volume too small (V–)	29	28	
Dose too large (D+)	—	2	
Dose too small (D–)	6	5	
Dosage too slow (Ds)	5	6	
Any protocol violation (= PV)	38	37	

Table 6. PVs as Prospectively Assessed by the Radiotherapy Review

Dühmke et al (GHSG), JCO 2001;19:2905-2914

Dühmke et al (GHSG), JCO 2001;19:2905-2914

Radiation dose in Hodgkin Lymphoma

- Introduction
- Current evidence
- <u>Guidelines</u>

Guidelines Combinations

- Subclinical disease
 - ➔ chemotherapy
- Clinical disease
 → chemotherapy + IN RT
- Extensive disease
 - → extensive chemotherapy
 - ➔ consolidating RT if residual disease

Guidelines Radiation dose

- after limited chemotherapy: IN principle
 - CR(u) 30 Gy, probably lower ~ 20 Gy

- PR 30 ± 6 Gy

 after extensive chemoth.: IN & iceberg principle

- CR(u) 0 Gy

- PR 30 ± 6 Gy

Guidelines Quality assurance

- Target volume delineation
 - IN principle
 - Image co registration: planning CT before chemotherapy
- Treatment delivery

Appropriate margins ~ immobilisation

Conclusions

Further optimization of combination chemotherapy + RT:

"Less of both might be better than much of one of them!"

Conclusions

Further optimization of RT:

- \checkmark lower doses
- ✓ smaller fields
- \checkmark further individualisation

Role of the radiation oncologist!!!

Many thanks to:

- The radiotherapy subcommittee of the EORTC Lymphoma Group:
 Berthe Aleman, Ed Noordijk, Paul Meijnders, Rick Haas, Théo Girinsky, Yolande Lievens, Richard van der Maazen, Lena Specht, et al.
- John Raemaekers
- Floor van Leeuwen
- and many others