Incontri Bresciani di Radioterapia Oncologica – Edizione 2010 Brescia Meetings in Radiation Oncology – 2010 Edition

Hodgkin and Non Hodgkin Lymphomas: a new Role for Radiation Therapy?

The reasons to use TBI: from Biology to Clinical Applications

Andrea Riccardo Filippi Radiation Oncology Unit AOU S. Giovanni Battista – Torino, Italy

Presentation Outline

- Background of myeloablative TBI
- Myeloablative TBI clinical applications
- The role of TBI in non-myeloablative approaches
- New conditioning regimens?

Phases of Myeloablative Approaches to Allografting

Components	Purpose				
1. Myeloablative conditioning pretransplant	Host immunosuppression Eradication of underlying disease Creation of Marrow Space				
2. Stem Cell Graft	Rescue from myelosuppression Establishment of normal hematopoiesis Graft-versus-tumor				
3. Postgrafting immunosuppression	Prevent rejection Control of GVHD				
4. Discontinuation immunosuppression	Achievement of tolerance				

To achieve the goals of step 1

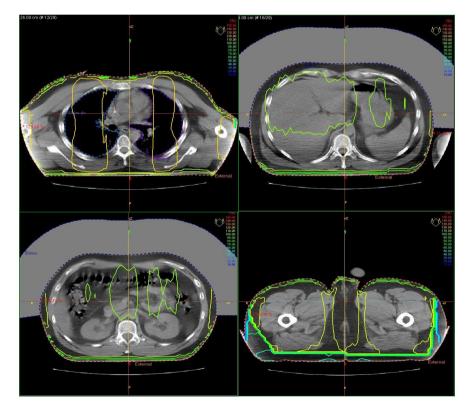
- Chemotherapy: myelotoxic-stem cells toxic + immunosuppressive → agents like busulfan, melphalan, BCNU + Cyclophosphamide, Fludarabine, ATG
- Radiation Therapy: high dose TBI
- A combination of CT and RT

Theoretical advantages of combining CT-RT (compared to CT only)

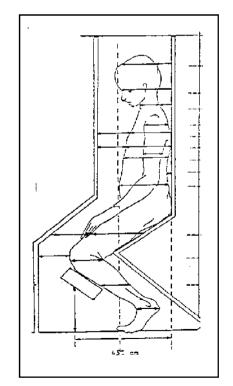
- No sparing of sanctuaries
- No cross resistance with other agents
- No need of detoxificatio/excretion fully functional mechanisms

Classic Conditioning Regimens

CY/TBI

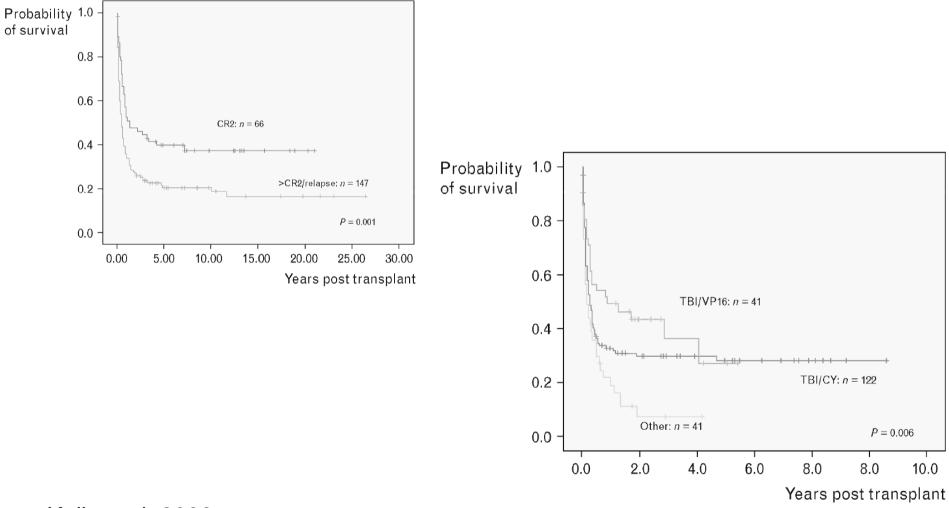

CY 60 mg/kg days -6 e -5
Total Body Irradiation days -3 -2 e -1, for a total dose of 10-14,4 Gy

BU/CY

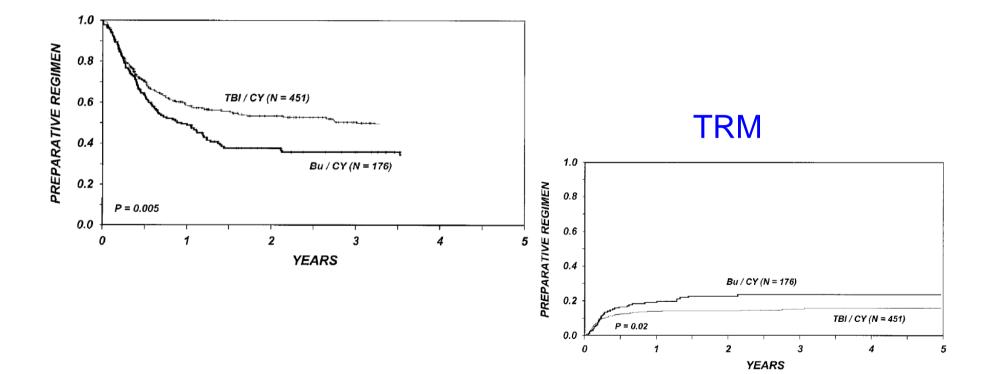

BU 4 mg/kg/die per os in 4 daily doses from –9 to –6
CY 50 mg/kg dal gg –5 al gg –2

12 Gy in 6 fractions over 3 days: a standard approach

Treatment planning elaborated on CT scan


Conventional AP/PA technique Gantry at 270° Collimator at 45°

Clinical Experiences of allogeneic transplantation with TBI conditioning


- High-risk AML
- High-Risk ALL
- Relapsed-refractory Lymphomas/Chronic Lymphatic Leukemia

TBI Containing regimens vs. other in ALL Munich Experience (1975-2009)

Kolb et al, 2009

TBI/CY vs. BU/CY in pediatric ALL

Davies et al, 2000

Impact of Conditioning Regimen in Allogeneic Hematopoetic Stem Cell Transplantation for Children with Acute Myelogenous Leukemia beyond First Complete Remission: A Pediatric Blood and Marrow Transplant Consortium (PBMTC) Study

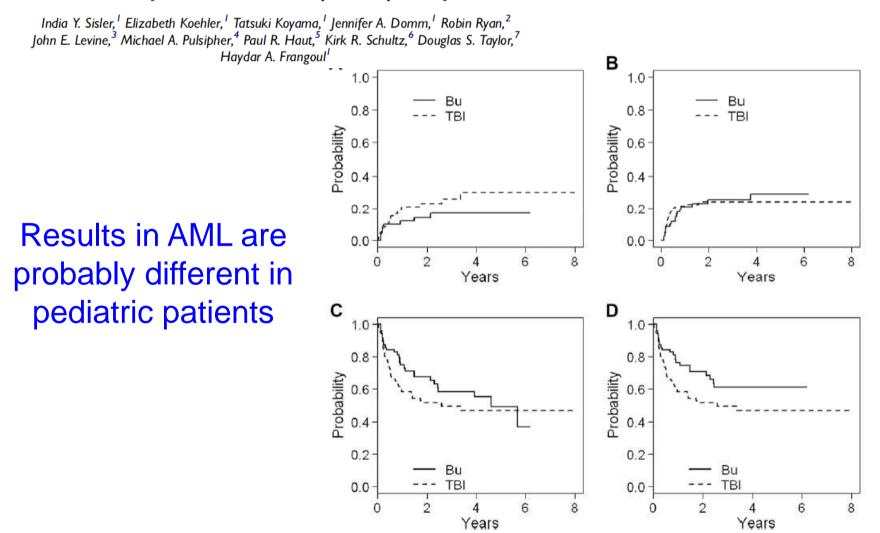
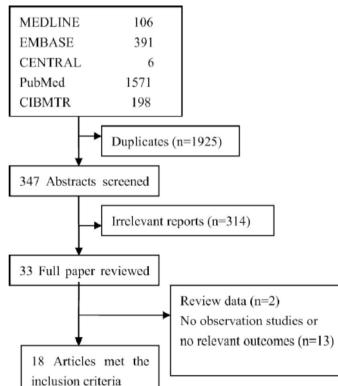



Figure I. TRM (A), incidence of relapse (B), EFS (C), and OS (D).

A meta-analysis?

Total body irradiation plus cyclophosphamide *versus* busulphan with cyclophosphamide as conditioning regimen for patients with leukemia undergoing allogeneic stem cell transplantation: a meta-analysis

XU SHI-XIA¹, TANG XIAN-HUA¹, XU HAI-QIN¹, FENG BO¹, & TANG XIANG-FENG²

¹Department of Medical Information and ²Department of Pediatrics, Navy General Hospital, Beijing, China

Leukemia and Lymphoma 2010

Selected Trials

TBI/BU Follow-up Reference (no. of patients) Dose of TBI/BU Diseases GVHD prophylaxis Source of HSC (yr) Age (vr) Wingard et al. [10] fTBI 3Gv × 4, BU/CY4, BU:16 mg/kg(O) ALL,AML, 2 23/241.8 - 11.9NA Auto-and NHL, etc. allogeneic BM Blaise et al. [11] fTBI 12Gv, BU/CY2, BU:16 mg/kg(O) AML Allogeneic BM 2 50/51 32 + 8CsA + MTXClift et al. [12] 69/73 fTBI 2Gy × 6, BU/CY2, BU:16 mg/kg(O) 6-55 CML CsA+MTX id sib BM 4 2 Michel et al. [13] 32/42 fTBI/CY, BU/CY2, BU/CY4, BU:16 mg/kg(O) 0-16 AML CsA + MTXid sib BM CML 5 Devergie et al. [14] 55/65 fTBI 10 Gy \times 1 or 2Gy \times 6, BU/CY2, 10 - 54CsA + MTX + MoAbid sib BM BU:16 mg/kg(O)2 Ringdén et al. [15] TBI/CY, BU/CY2, BU/CY4 id sib BM 391/391 Unlimited ALL, AML CsA + MTX7 Micheal et al. [16] 32/42 TBI $10Gv \times 1$ or fTBI 11-15Gv, BU/CY2, 8.5 ± 1.5 AML $C_{sA} + MTX$ id sib BM BU/CY4, BU:16 mg/kg(O) Ringden et al. [17] 7 79/88 TBI $10Gv \times 1$ or fTBI 12Gv. BU/CY2, ALL, AML. CsA+MTX id sib BM 2-55 BU:16 mg/kg(O) CML Granados et al. [18] 114/42 fTBI 10-12Gy, BU/CY2, BU:16 mg/kg(O) 2-59 ALL CsA+MTX Auto- or id sib SC 4 Davies et al. [19] 451/176 fTBI 10-12Gy, BU/CY2, BU:16 mg/kg(O) 0.5-19.9 ALL $CsA \pm MTX \pm other$ id sib BM 3 Kröger et al. [20] 25/25 fTBI 2Gv × 6, BU/CY2, BU:16 mg/kg(O) 19-57 CML $C_{sA} + MTX + ATG$ Unrelated SC 3 Kim et al. [21] 26/27 fTBI 1.65Gy × 8, BU/CY2, BU:16 mg/kg(O) 17 - 50CML $C_{sA} + MTX$ id sib BM 5 5 Litzow et al. [22] 200/381 fTBI 11-14Gy, BU/CY2, BU:16 mg/kg(O) 20-57 AML CsA+MTX Allogeneic BM Allogeneic SC 2 Holmstrom et al. [23] 21/24TBI 10Gv × 1, BU/CY4, BU: 16 mg/kg(O) 2-16 AML, ALL, CML CsA + MTXBunin et al. [24] 22/21 fTBI 2Gy × 6, BU/CY2, BU:16 mg/kg(O) <21 ALL CsA+MTX Allogeneic SC 3 TBI 7.5-8.5Gv × 1, BU/CY2, BU:16 mg/kg(O) 14 42 AML, ALL, CML id sib PBSC 3 Zhang et al. [25] 23/21 CsA+MTX Lähteenmäki et al. [26] 26/18fTBI 10Gy, BU/CY2, BU/CY4, BU:16 mg/kg(O) 0.99 - 7ALL, AML CsA+MTX or TCD Related or 5 unrelated SC Smedler and 12/10TBI 10Gy \times 1 or 4 Gy \times 3, BU/CY2, 0.4-3.6 ALL, AML, CML, NA Allogeneic SC 6.5 BU/CY4, BU:16 mg/kg(O) Winiarski [27] non-malignant

Table I. Characteristics of included studies.

yr, year; No, number; HSC, Hematopoietic stem cell; HLA, human leukocyte antigen; Bu, busulphan; Cy, cyclophosphamide; fTBI, fractionated total body irradiation; TBI, total body irradiation; ALL, acute lymphoblastic leukemia; CML, chronic myelocytic leukemia; AML, acute myelogenous leukemia; NHL, non-Hodgkin lymphoma; BM, bone marrow; GVHD, graft-*versus*-host disease; NA, not applicable; CsA, cyclosporine; MTX, methotrexate; MoAb, mono-clone antibody; id sib, identical sibling; SC, stem cell; PBSC, peripheral blood stem cell.

Shi-Xia et al, Leukemia and Lymphoma 2010

DFS for acute leukemias: TBI/Cy vs. Bu/Cy

	TBI/C		BU/C			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 ALL							
Bunin	13	22	6	21	4.0%	3.61 [1.01, 12.89]	
Davies	276	451	83	176	18.6%	1.77 [1.24, 2.51]	-#-
Granados	49	1 1 4	10	42	8.3%	2.41 [1.08, 5.37]	
Subtotal (95% CI)		587		239	30.9%	1.93 [1.42, 2.64]	•
Total events	338		99				
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.47	, df = 2 (P	= 0.48); l² = 0%		
Test for overall effect:	Z = 4.14 (P < 0.0	001)				
1.1.2 AML							
Blaise	39	50	27	51	7.4%	3.15 [1.33, 7.49]	
Litzow	114	196	205	380	18.7%	1.19 [0.84, 1.68]	
Michel G	26	32	26	42	5.3%	2.67 [0.90, 7.89]	
Ringden	169	269	158	269	18.7%	1.19 [0.84, 1.68]	
Subtotal (95% CI)		547		742	50.1%	1.49 [1.01, 2.20]	•
Total events	348		416				
Heterogeneity: Tau ² =	0.07; Chi ²	= 6.21	df = 3 (P	= 0.10); ² = 52%	5	
Test for overall effect:					,,		
1.1.3 CML							
Devergie	28	55	25	65	9.4%	1.66 [0.80, 3.43]	
Kim I	14	26	18	27	5.1%	0.58 [0.19, 1.77]	
Kröger	15	25	18	25	4.6%	0.58 [0.18, 1.91]	
Subtotal (95% CI)		106		117	19.0%	0.93 [0.44, 1.98]	
Total events	57		61				
Heterogeneity: Tau ² =	0.20; Chi ²	= 3.54	, df = 2 (P	= 0.17); l ² = 44%	5	
Test for overall effect:							
Total (95% CI)		1240		1098	100.0%	1.53 [1.16, 2.02]	•
Total events	743		576				
Heterogeneity: Tau ² =	0.08; Chi ²	= 16.5	8, df = 9 (P = 0.0	6); l ² = 46	%	
Test for overall effect:							0.01 0.1 1 10 Favours BU/CY Favours TE

Shi-Xia et al, 2010

TBI/Cy or Bu/CY?

- TBI/CY and BU/CY are the 2 gold standards
- TBI/CY : lower relapse rates for acute leukemias, expecially ALL → higher DFS (risk of CNS relapse?)
- With BU/CY: slightly higher risk of TRM (higher VOD risk, higher HC risk)
- TBI/CY: higher late toxicity, expecially in children (impaired development)
- TBI/CY: higher IP risk (unconfirmed when fractionation and lung shielding are used)
- Study limits: heterogeneous studies, small numbers, various pre-transplant regimens

CT/RT Conditioning: a toxic treatment

ACUTE SIDE EFFECTS

Alopecia* Nausea and vomiting* **Oral mucositis*** Pancytopenia* Veno-occlusive disease of the liver Interstitial pneumonitis **Diarrhea*** Infection due to neutropenia Gastrointestinal hemorrage Hemorragic cystitis Cardiomyopathy **Dermatitis Peripheral neuropathy** Acute renal failure **Pancreatitis Parotitis**

DELAYED EFFECTS

Cataracts Infertility* **Hypothyroidism Radiation nephritis** Secondary malignancies Impaired growth and development in children/psychosocial problems Osteoporosis **Restrictive lung disease**

Strahlentherapie und Onkologie

Supplement Article

Late Toxicity in Children Undergoing Hematopoietic Stem Cell Transplantation with TBI-containing Conditioning Regimens for Hematological Malignancies

Umberto Ricardi¹, Andrea Riccardo Filippi¹, Eleonora Biasin², Patrizia Ciammella¹, Angela Botticella¹, Pierfrancesco Franco¹, Andrea Corrias³, Elena Vassallo², Riccardo Ragona¹, Franca Fagioli²

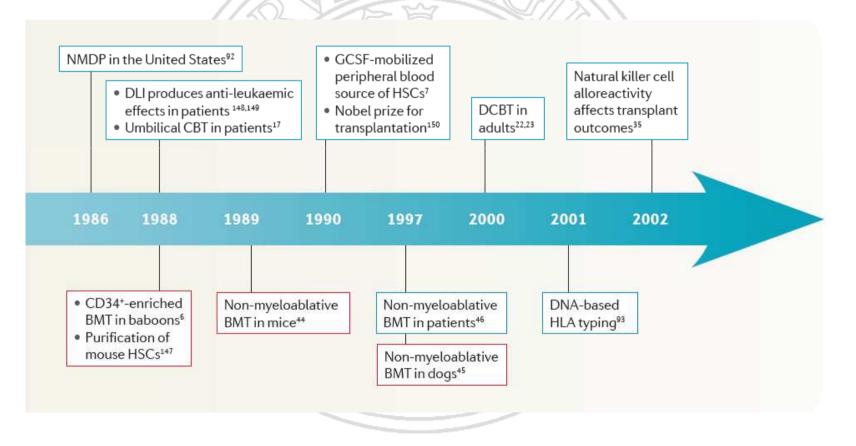
*Almost invariably occur after high-dose regimens

Transplant-Related Mortality

- With conventional allo-BMT, expected nonrelapse mortality (NRM) @ day 100 is 23%, @ 1 year is 30% (FHCRC, Blood 2004)
- There is a strong correlation with a direct adverse effect of conditioning (Cy-TBI, Busulfan-TBI)

Consequential restriction in allo-BMT indications

Median Ages at HSCT vs. Ages at Diagnoses


Allogeneic HSCT Recipients (FHCRC)

Disease	Related Donor	Unrelated Donor	(SEERS)
CML	40	36	67
AML	28	33	68
NHL	33	35	65
MM	45	45	70
CLL	51	46	71
HD	29	28	34
MDS	40	41	68
Overall	40(n=1428)	35(n=1277)	_

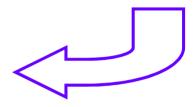
Sandmaier Keystone 2001

At Diagnoses

An alternative way: Reduced Intensity Conditioning

Jenq R, Nat Rev Cancer 2010

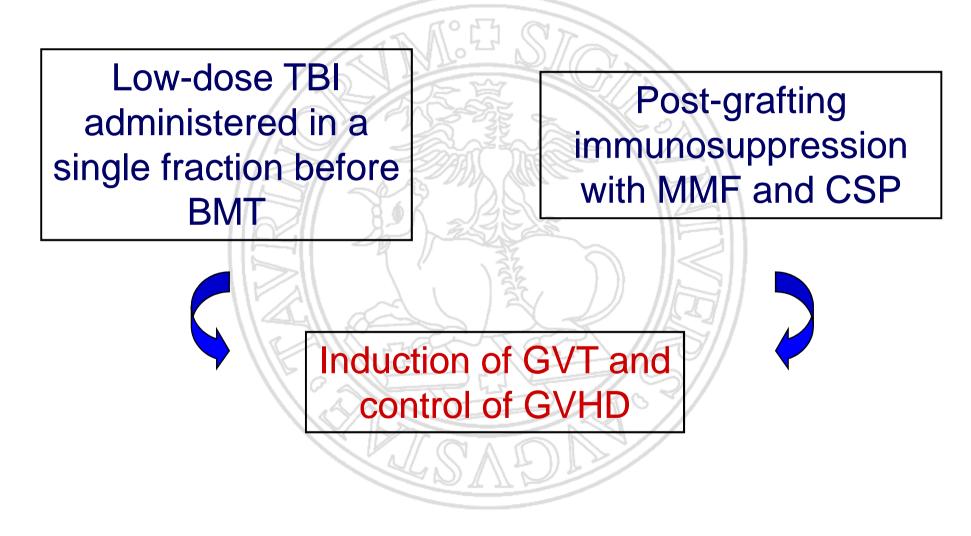
A new approach to allografting


- 1. High Dose Regimen 1. Non Myeloablative Regimen
- eradicate malignancy
- create space
- suppress host immunity
- 2. Stem Cell Graft
 - rescue from pancytopenia
- 3. GVHD Prevention
 - post-grafting immunosuppression
 - T cell depletion

- not aimed at eradicate malignancy
- not aimed at creating space
- suppress host immunity
- 2. Stem Cell Graft
 - rescue from pancytopenia
- 3. GVHD Prevention
 - potent post-grafting immunosuppression to overcome HVG barriers
 - T cell depletion

GRAFT VS TUMOR Aim: Tumor Eradication By Immunotherapy

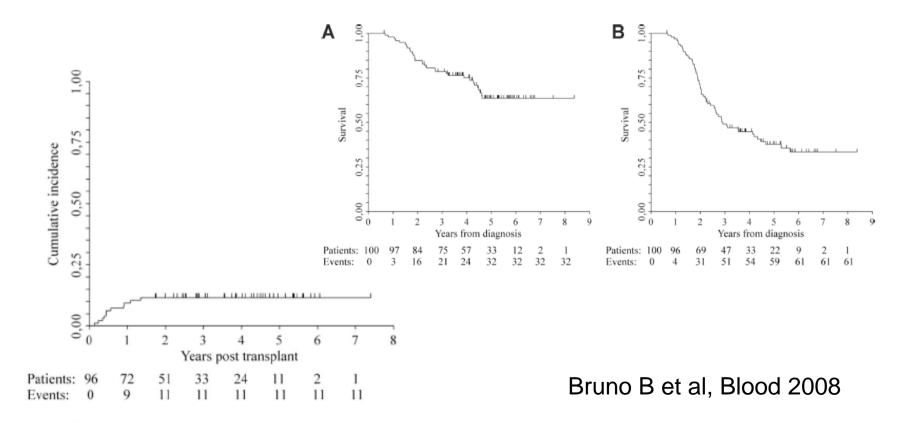
CONVENTIONAL


REDUCED INTENSITY NON MYELOABLATIVE

CONDITIONING REGIMEN Aim: Tumor Eradication By Chemoradiotherapy

GRAFT VS TUMOR

Aim: Tumor Eradication By Immunotherapy


Role of low dose TBI in nonmyeloblative allografting

RIC with 2 Gy TBI/Flu: experience in MM

Nonmyeloablative allografting for newly diagnosed multiple myeloma: the experience of the Gruppo Italiano Trapianti di Midollo

Benedetto Bruno,¹ Marcello Rotta,¹ Francesca Patriarca,² Daniele Mattei,³ Bernardino Allione,⁴ Fabrizio Carnevale-Schianca,⁵ Roberto Sorasio,¹ Alessandro Rambaldi,⁶ Marco Casini,⁷ Matteo Parma,⁸ Pasqua Bavaro,⁹ Francesco Onida,¹⁰ Alessandro Busca,¹¹ Luca Castagna,¹² Edoardo Benedetti,¹³ Anna Paola Iori,¹⁴ Luisa Giaccone,¹ Antonio Palumbo,¹ Paolo Corradini,¹⁵ Renato Fanin,² David Maloney,¹⁶ Rainer Storb,¹⁶ Ileana Baldi,¹⁷ Umberto Ricardi,¹⁸ and Mario Boccadoro¹

Lower TRM and higher OS

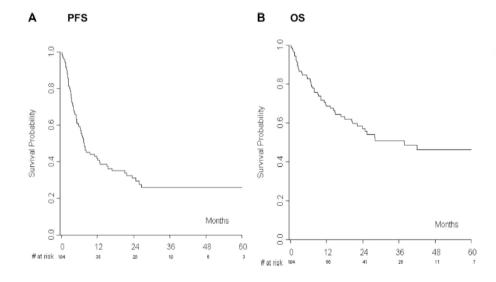
Jenq, Nat Rev Cancer, 2010

Alternative RIC strategies: intermediate conditioning

The Addition of 400 cGY Total Body Irradiation to a Regimen Incorporating Once-Daily Intravenous Busulfan, Fludarabine, and Antithymocyte Globulin Reduces Relapse Without Affecting Nonrelapse Mortality in Acute Myelogenous Leukemia

James A. Russell,¹ William Irish,² Alexander Balogh,¹ M. Ahsan Chaudhry,¹ Mary Lynn Savoie,¹ A. Robert Turner,³ Loree Larratt,³ Jan Storek,¹ Nizar J. Bahlis,¹ Christopher B. Brown,¹ Diana Quinlan,¹ Michelle Geddes,¹ Nancy Zacarias,¹ Andrew Daly,¹ Peter Duggan,¹ Douglas A. Stewart¹

400 cGy TBI with fludarabine for reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation


RM Sobecks¹, R Dean¹, LA Rybicki², J Chan¹, KS Theil³, R Macklis⁴, S Andresen¹, M Kalaycio¹, B Pohlman¹, C Ferraro¹, K Cherni¹, J Sweetenham¹, E Copelan¹ and BJ Bolwell¹

¹Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; ²Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA; ³Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH, USA and ⁴Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA

Alternative RIC strategies: intermediate conditioning

Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability

Barbara Sarina,¹ Luca Castagna,¹ Lucia Farina,² Francesca Patriarca,³ Fabio Benedetti,⁴ Angelo M. Carella,⁵ Michele Falda,⁶ Stefano Guidi,⁷ Fabio Ciceri,⁸ Alessandro Bonini,⁹ Samantha Ferrari,¹⁰ Michele Malagola,¹¹ Enrico Morello,¹² Giuseppe Milone,¹³ Benedetto Bruno,¹⁴ Nicola Mordini,¹⁵ Simonetta Viviani,¹⁶ Alessandro Levis,¹⁷ Laura Giordano,¹⁸ Armando Santoro,¹ and Paolo Corradini,^{2,19} for Gruppo Italiano Trapianto di Midollo Osseo

Table 2. Conditioning regimens

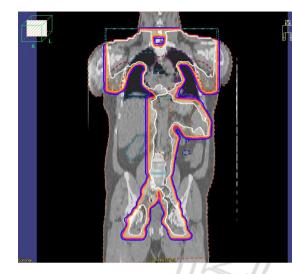
Conditioning regimen	No. of patients
Fludarabine (90 mg/m ²) + melphalan (100-140 mg/m ²) ± ATG	15
Thiotepa (10 mg/kg) + cyclophosphamide (100 mg/kg) ± ATG	11
Fludarabine (60 mg/m ²) + cyclophosphamide (60 mg/kg) + thiotepa (10 mg/kg)	49
Fludarabine (150 mg/m ²) + busulfan (8 mg/kg)	2
Thiotepa (5 mg/kg) + cyclophosphamide (100 mg/kg) + melphalan (70 mg/m ²) + ATG or alemtuzumab	6
Fludarabine (120 mg/m ²) + cyclophosphamide (60 mg/kg) + thiotepa (10 mg/kg) + alemtuzumab + TBI 2 Gy	6
Fludarabine (120 mg/m ²) + cyclophosphamide (900 mg/m ²)	11
Fludarabine (90 mg/m ²) + TBI 2 Gy	4

Sarina et al, Blood 2010

TBI: Different Options in 2010

- Classic Myeloblative Approach in ALL ped/adult, and selected AML→ TBI 12 Gy/6 fractions
- Reduced Intensity classic approach for MM, CLL in CR → TBI 2 GY single fraction
- Intermediate Reduced Intensity regimens: when you need higher rates of disease eradication, not too toxic conditioning → TBI 4 Gy single fraction, 8 Gy 4 fractions

We're still using TBI, at standard or different doses: can we imagine further applications of RT prior to allo-BMT?


Due to the fact that acute grade II-IV GVHD is still the main toxic event in the first 100 days post allo-BMT

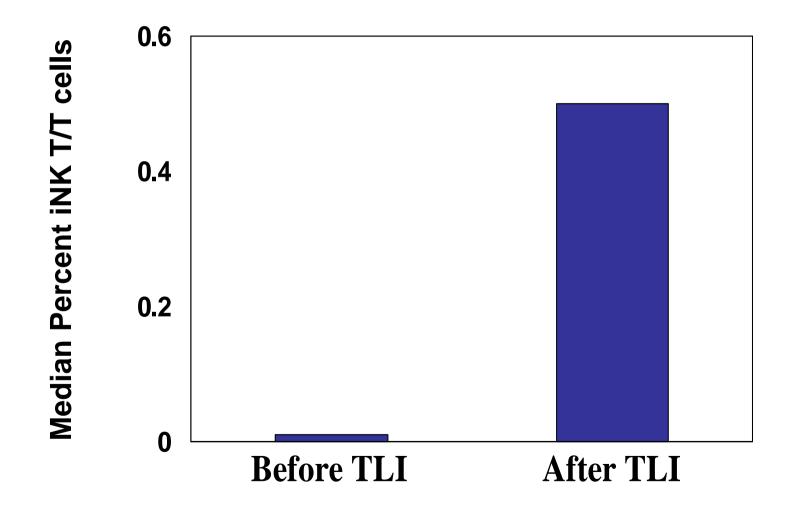
"Protective" Conditioning ?

Back to biology: from generalized towards selected immuno-suppression

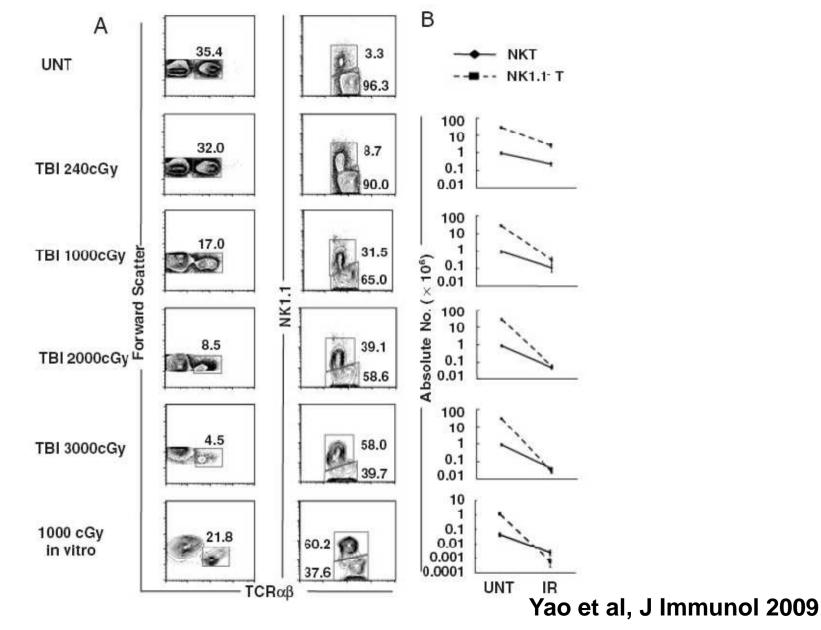
Predominance of NK1.1⁺TCR $\alpha\beta^+$ or DX5⁺TCR $\alpha\beta^+$ T Cells in Mice Conditioned with Fractionated Lymphoid Irradiation Protects Against Graft-Versus-Host Disease: "Natural Suppressor" Cells¹

Fengshuo Lan,* Defu Zeng,* Masanori Higuchi,* Philip Huie,[†] John P. Higgins,[†] and Samuel Strober²*

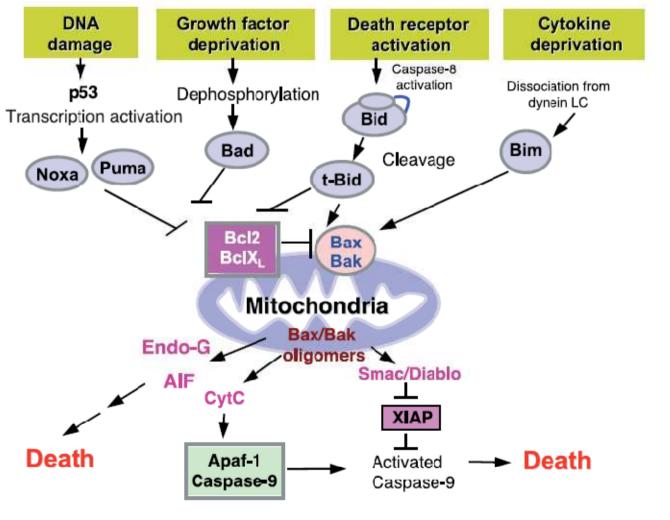
TLI and ATG conditioning regimen: immunological basis


Favoring host regulatory NK T cells:

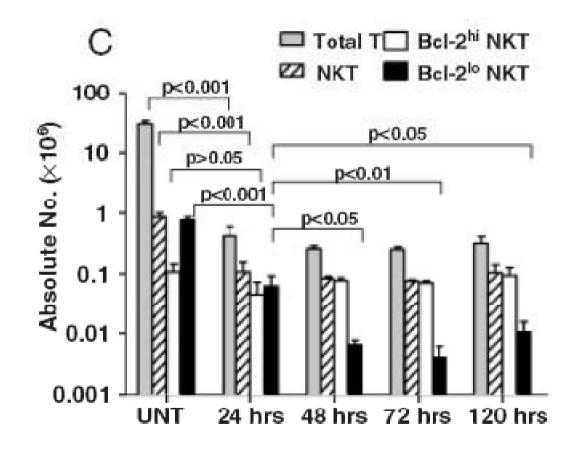
→ polarizing donor T cells towards secretion of cytokines like interleukin-4


→ promoting expansion of donor CD4+CD25+ Fox

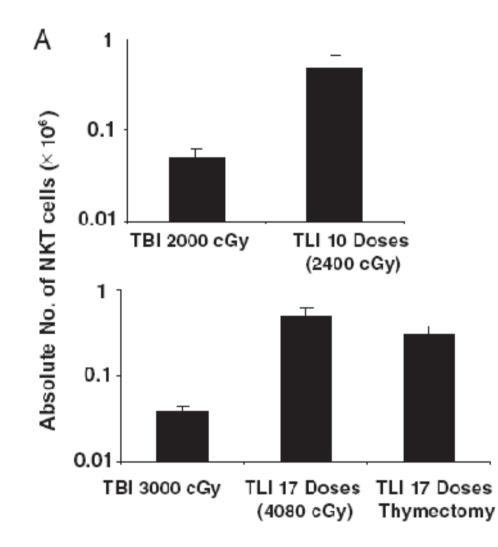
P3+ T regulatory cells


Increased percent of iNK T cells/All T cells in peripheral blood of patients receiving TLI and ATG

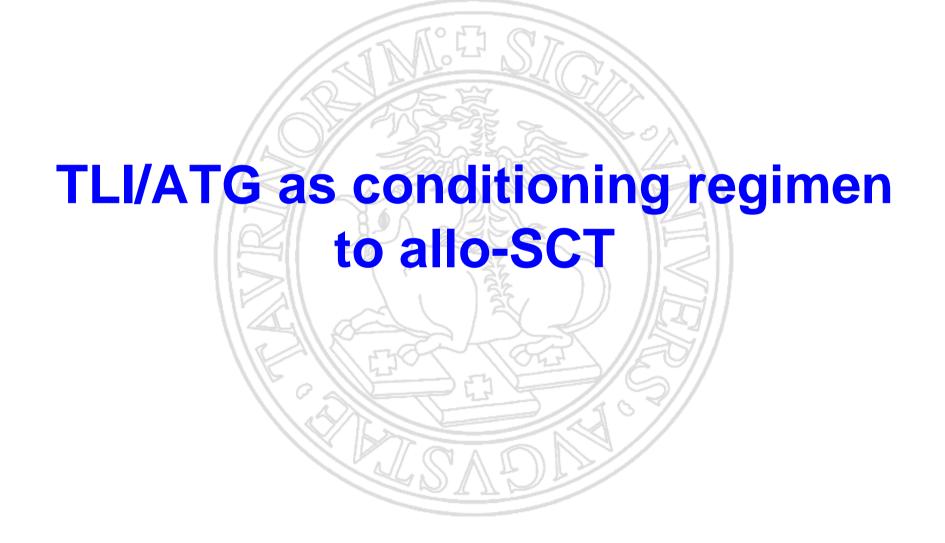
NK T Cells are Radiation Resistant



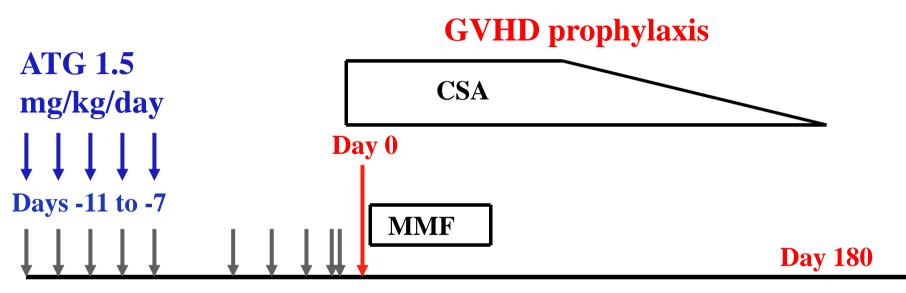
Role of Bcl-2


Kim, Cancer 2005

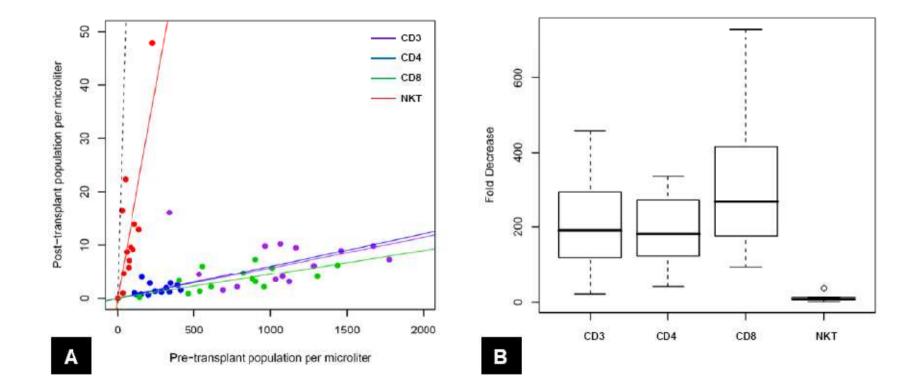
Radio-resistance of NKT cells depends on Bcl-2 expression



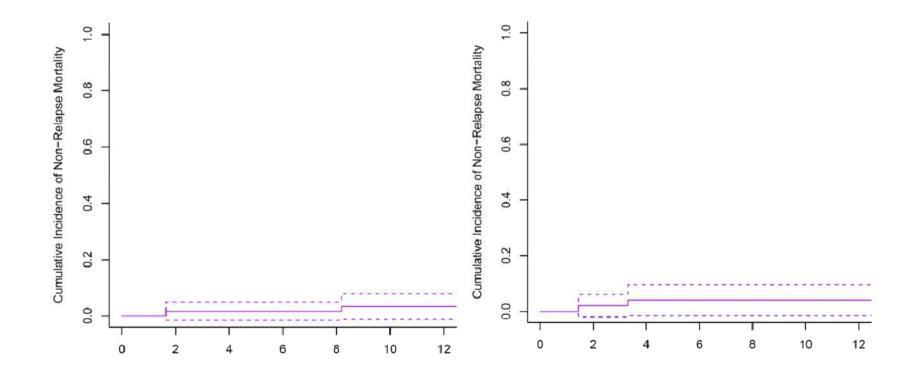
Yao et al, J Immunol 2009


Differences between TBI and TLI

Yao et al, J Immunol 2009


The Stanford protocol

Days -11 to -7 Days -4 to -1 TLI 800 cGy over 10 fractions


Infection Prophylaxis HSV: if +ve acyclovir 400 mg BID CMV: blood PCR weekly EBV: blood PCR every 2 weeks PCP: Septra DS BID weekends D+42 Fungus: if prior infection or URD

2009 trial up-date: effect of TLI plus ATG on circulating T-cells subsets

Kohrt et al, Blood 2009

2009 trial up-date: CI of aGVHD

Kohrt et al, Blood 2009

Incontri Bresciani di Radioterapia Oncologica – Edizione 2010 Brescia Meetings in Radiation Oncology – 2010 Edition

Hodgkin and Non Hodgkin Lymphomas: a new Role for Radiation Therapy?

Remarks

- Myeloablative TBI is still a gold standard for conditioning in ALL/AML
- Non-myeloablative TBI is a major component of non-myeloablative regimens
- TLI is feasible and safe but should be reserved to patients in clinical trials (and performed by RO trained in hemato-oncology)
- Biological basis and mechanisms of immunomodulation after RT continue to be object of investigation