

Radiotherapy in Non Hodgkin Lymphoma: dose

Michela Buglione di Monale Cattedra di Radioterapia

Radiotherapy in NHL's

- dose needed to control disease?
 - nodal DLCL stage I-II vs III-IV extranodal DLCL
- dose-related toxicity?

Radiosensibility: where do we stand with lymphomas? We all know since many years that...

Figure 17.6 Surviving fraction at 2 Gy for 51 human tumour cell lines, arranged in five categories of clinical radioresponsiveness. From Deacon et al. (1984), with permission.

A: LINFOMA, MIELOMA, NEUROBLASTOMA B: MEDULLOBLASTOMA, SCLC C: CA MAMMARIO, VESCICALE, CERVICE UTERINA D: CA PANCREAS, COLORETTALE, NSCLC E: MELANOMA, OSTEOSARCOMA, GLIOBLASTOMA

Stage I-II DLBC lymphoma in the clinic

First question

Is the radiotherapy dose needed to control disease equal to zero? (null hypotesis)

Second question

If not, what dose is needed to control disease?

I-II DLBC NHL

Radiotherapy is useful But not alone..

Brescia - 14 Maggio 2010

Ann Hematol (2001) 80:B66–B72

Radiotherapy in I-II DLBC NHL

combined m	odality tr	eatment – randon	nized trials		
	n° PTS	Stage	treat	FFP/RF S	OS
SWOG 8736 Miller (NEJM 1998)	401	l or IEA (b/non b) II or IIEA (non b)	Cx3 →IFRT vs CHOP x8	77% vs 68%	92% vs 72%
ECOG 1484 Horning (JCO 2004)	215	l (b or EN only) ll (b/non b)	Cx8 if CR →RT vs no RT if PR → RT	70% 53% 63%	79% 67% 69%
GELA LNH 93-1 Reyes (NEJM 2005)	647	Age <60 (10%b; 50%EN; no AA IPI factors)	Intensive CHT alone vs Cx3 → RT	82% 74%	<u>90%</u> 81%
GELA LNH 93-4 Bonnet (JCO 2007)	576	Age >60 (8%b; 56% EN; no AA IPI factors)	Cx4 → RT vs Cx4	66% vs 68%	72% Vs 68%

Radiotherapy in I-II DLBC NHL

combined m	odality treatme	nt – randomized trials
	treat	dose
SWOG 8736 Miller (NEJM 1998)	Cx3 →IFRT vs CHOP x8	40-55 Gy (no stated criteria ; probably PR pts had >40Gy; the n° of pts with PR is unknown)
ECOG 1484 Horning (JCO 2004)	Cx8 if CR →RT vs no RT if PR → RT	$CR \rightarrow 30 \text{ Gy}$ PR $\rightarrow 40 \text{ Gy}$ (outcome similar for CR pts after CHT alone)
GELA LNH 93-1 Reyes (NEJM 2005)	Intensive CHT alone vs Cx3 → RT	Planned dose 40 Gy Given dose 36-40 Gy (lower; <u>no decision</u> criteria; 26 pts were not given RT)
GELA LNH 93-4 Bonnet (JCO 2007)	Cx4 → RT vs Cx4	Planned 40 Gy Given dose 36-44 Gy (39 pts were not given RT)

Radiotherapy is therefore an essential part of integrated treatment, but data reported on RT doses are often <u>poor quality</u> data.... Especially when the reporting author is not a radiation oncologist

QUALITY OF RADIOTHERAPY REPORTING IN RANDOMIZED CONTROLLED TRIALS OF HODGKIN'S LYMPHOMA AND NON-HODGKIN'S LYMPHOMA: A SYSTEMATIC REVIEW

JUSTIN E. BEKELMAN, M.D.,* AND JOACHIM YAHALOM, M.D.*

	n/tot	%
Dose	57/61	89
Dose/fraction	39/61	64
Point of prescription	13/61	21

Radiation o	ncology au	thor
yes	35	66
no	26	19
	p <(0.001

IJROBP (2009) 73: 492

Radiotherapy in I-II DLBC NHL

IJROBP 2000 48(1): 161

Radiotherapy in I-II DLBC NHL

		Dos	se in different tri	als			
Center	n° pts	stage	dose	CR	5yDSS	5y PFS	note
JLRTG (IJROBP '00)	787	I-II; EN	20-70 Gy	nn	nn	69%	> =40 Gy no better EFS; no ↑ in bulky
BCCA (JCO '00)	308	I-IIA; EN	10x3Gy; 20x1.75Gy	97%	87%	81%	Survival is IPI strongly related
Holland (rad oncol '01)	128	I; EN	CR 26 Gy PR 40 Gy	91%	nn	74%	no better outcome in CR pts wit <mark>h 40 Gy;</mark>
MDACC (IJROBP '95)	190	I-II-III ; EN	30-40 Gy + 10-15 Gy	nn	62%	58%	Local control 97% >=40 and 83% 30-40 Gy; 88% and 71% when bulky
Holland (rad oncol '98)	94	I A e B; EN	36 Gy (6-8) 40 Gy (3-4)	nn	89%	83%	RT dose varying with CHT cycles N°
INT (JCO '93)	183	I-II (no> 3)	40-44 Gy	98%	nn	83%	36 Gy on uninvolv regions
Univ of Florida (IJROBP '99)	213	1-11	30-50 Gy	nn	nn	66%	>40Gy → Better outcome in pts with bulky cisease and PR
MDACC (IJROBP '01)	172	I-II; EN	30-50.4Gy (BED 29-51 Gy)	Nn	nn	nn	BED <mark>29-39 Gy</mark> →poorer local control in bulky ;

Radiotherapy in I-II DLBC NHL

Stage III-IV DLBC lymphoma in the clinic

First question

Is the radiotherapy dose needed to control disease equal to zero? (null hypotesis)

Second question

If not, what dose is needed to control disease?

Radiotherapy dose should be > 0 ?

						P	
Radio	ther	ару	dose shou	ld be	>0	?	obably YES!
			Dose in different trials	3			
Centre	n° pts	stage	dose	CR	5yDSS	5y PFS	note
Aviles IJROBP 1994	341 in CR after CHT	IV b	In CR pts 40 Gy vs no RT			82% vs 55%	5 y OS 87% vs 66%
Schlernbach (MDACC) IJROBP 2000	59	-IV	CHOP → 30-50 Gy vs no RT	89% vs 52%		85% vs 51% *	 LC 89% vs 33% in >4cm* Small and bulky lesion no diff in OS
Aviles MEDICAL ONCOL 2005	106	III-IV	In PR after CHT 30 Gy Vs no RT			86% vs 32%	10 y OS 89% vs 68%
Moser IJROBP 2006	238 (114 in PR)	III-IV	In PR after CHT 40 Gy vs 2° line CHT (or ASCT)	61% Vs 21% (75%)		Better with RT	5 y OS after CR 61% vs 32% (68%)

							BS
Are bene	there efit fr	subgr om R ⁻	oups getting a F?	larger	way	be the L	Pulky
			Dose in different trials	5			Cases 2
Centre	n° pts	stage	dose	CR	5yDSS	5y PFS	note
Ferreri ONCOLOGY 2000	94	III-IV in CR after CHT	30-46 Gy vs no RT (medical decision)			41 vs 18 months	 •bulky >10 cm • OS and PFS improved in CMT in low risk pts • >=36 Gy better OS
Rube (NHLB-94) ANNAL HEMATOL 2001	366 (in CR after CHT) pts; 84 (b)		CHOP vs CHOP + RT (bulky pts 36 Gy)			74% (3 y)	 bulky >7.5 cm No differences in DFS in bulky and no bulky rt riduces the heavy of bulky prognostic factor
Krieger ONKOLOGIE 2001	71	49 St III-IV	MACOP B -) In bulky CR pt <mark>s 40 Gy</mark>			42%	 bulky =>5 cm out of field relapse RT not well defined
Bartlett (Stanford) CANCER 1993	47	27 st III-IV	MACOP B-) In bulky CR pt <mark>s 35-40</mark> Gy				 bulky >=8 cm better OS and FFP difficult to define the role of RT dose

Radiotherapy plays (possibly) a role..... but..

Radiotherapy in III-IV DLBC NHL

Radiotherapy in DLBC NHL

NO definitive RANDOMIZED TRIALS TO EVALUATE THE DOSE

STAGE I-II

40 Gy after 3-4 CHOP
(30-36 Gy for CR pts after 6-8 CHOP?)
in patients in RP or CR but bulky disease a 40-46 Gy dose is warranted NO definitive RANDOMIZED TRIALS TO EVALUATE -DOSE - INDICATIONS

STAGE III-IV

 RT could have a role in stage III-IV bulky disease and in pts with residual mass after chemotherapy
 40 Gy RT represent the standard

Brescia - 14 Maggio 2010

Radiotherapy dose in DLBC :

- role of PET: predict the outcome;
 - decision on RT dose?
- role of association with Rituximab
 - need for change of RT dose?

PET to predict the outcome and to help to define RT dose

Brescia - 14 Maggio 2010

IJROBP 2006 66(4): 961

PET to predict the outcome and to help to define RT dose

Is this the reason why?

Role of association with Rituximab

Comparision with previous trial

SWOG 0014

- ph 2
- CHOP+ Rituximab +RT
- low risk

JCO 2008 26 (14): 2258

Role of association with Rituximab

• Comparision with previous trial

Radiotherapy for extranodal (DLBC) lymphoma

Substantially the same questions could be posed
Substantially similar answers are obtained

We will only give a few examples

Cutaneous lymphoma

Head and neck DLBC

• RT obtain a **good local control**, however **almost 50%** of patients (even in early stage) relapse 22-42% in extranodal sites, **out of RT portals; high percentage of local relapse without RT**

Leuk & lymph 2008 49 (12):2263

DLBC NHL: breast

Ann Oncol 2008 19: 233

Primary diffuse large B-cell lymphoma of the breast: prognostic factors and outcomes of a study by the International Extranodal Lymphoma Study Group

RT dose (ipsilateral breast, $n = 110$)	Median	40 Gy	
	Range	4-60 Gy	
	Distribution		
	<30 Gy	4	.4
	30-39.9 Gy	34	-31
	40-49.9 Gy	61	55
	≥50 Gy	11	10
• good IPI,			
anthracycline-contradiotherapy (RT)	aining cht	• CMT • RT 36-46	Gy

Orbital NHL

 the median dose for low-grade tumors was 30 -36 Gy

 the median dose for intermediate and high-grade tumors was 40 – 46 Gy

IJROBP 2002 54(3): 818

Late toxicision Quantec or not to Quantec?

Portuge of a NTCP-based planning will probably remain a (dangerous?) dream for a very long time and the variety of treated volumes involved in DLCB lymphomas precludes a meaningful summary of the reported toxicities.

However, an accurate reporting of toxicity data is the pre-requisite to answer the question of organ-specific toxicity for low dose treatments such as those needed for the treatment of DLCB L.

Lung, salivary glands and heart are often considered major dose limiting organs in the treatment of lymphomas.

While good quality long term data are missing for the dose levels actually used, the <u>additional toxicity from CHT</u> <u>should be considered</u>.

Late toxicity

Late toxicity

Late toxicity

IJROBP 2010 76(3) suppl. S58

QUANTEC: ORGAN-SPECIFIC PAPER Head and Neck: Parotid **RADIOTHERAPY DOSE-VOLUME EFFECTS ON SALIVARY GLAND FUNCTION** JOSEPH O. DEASY, PH.D.,* VITALI MOISSENKO, PH.D.,[†] LA Pts risk factors M.D.,[§] Jiho Nam, K. S. CLIFFORD D.,[‡] and Avra (pre-RT function) Treat risk factors sparing at least one parotid **Rew of literature** gland and sparing at least one Minimal xerostomia at m submandibular gland dose <10–15 Gy • xerostomia is avoided if at least Gradual improvement at m one parotid gland has been spared dose 20–40 Gy to a **m dose <20 Gy** or if **both** severe xerostomia (>75%) glands have been spared to a m at >40 Gy dose < 25 Gy spare other salivary glands

Late toxicity

IJROBP 2001 49(5) 1327

CLINICAL INVESTIGATION

Hodgkin's Disease

Same conclusions:

survivors after combined

treatment for HD;

2. the not negligible impact on OS

do not juntify any change in the

therapeutic approch!

THE RISK OF SECOND MALIGNANT TUMORS AND ITS CONSEQUENCES FOR THE OVERALL SURVIVAL OF HODGKIN'S DISEASE PATIENTS AND FOR THE CHOICE OF THEIR TREATMENT AT PRESENTATION: ANALYSIS OF A SERIES OF 1524 CASES CONSECUTIVELY TREATED AT THE FLORENCE UNIVERSITY HOSPITAL

Ann Oncol 2006 17:1749

Second malignancy risk associated with treatment 1. the risk of second tumors is slighly increased in patients long of Hodgkin's lymphoma: meta-analysis of the randomised trials

... no more time now!....

