

Combined radiotherapy and chemotherapy in the treatment of oropharyngeal cancer

Pietro Ponticelli U.O. Radioterapia – Ospedale San Donato -Arezzo

Istituto Toscano Tumori

SUMMARY:

- Rationale and mechanisms of action
- Non site-specific trials either with CFRT and AFRT
- Site-specific trials either with CFRT and AFRT
- Unanswered questions:
 - induction chemotherapy
 - predictive factors
 - optimal concurrent chemotherapy
 - integration with targeted therapy
 - acute and late toxicity

SUMMARY:

- Rationale and mechanisms of action
- Non site-specific trials either with CFRT and AFRT
- Site-specific trials either with CFRT and AFRT
- Unanswered questions:
 - induction chemotherapy
 - predictive factors
 - optimal concurrent chemotherapy
 - integration with targeted therapy
 - acute and late toxicity

Rationale

- LC ≤ 50-60% with radiotherapy alone in stage III-IV head & neck cancer; better LRC with hyperfractionated accelerated radiotherapy (Horiot JC el al, 1997)
- 5 y OS = 30-35%
- 1/5 patients developed distant metastasis, unless achieved LC
- High activity of many drugs in squamous cell carcinomas

The main mechanisms of chemoradiation

- Temporal modulation: enhances tumor response to fractionated RT through the "4 R's" of radiotherapy: repair, repopulation, reoxygenation, and redistribution
- Biological cooperation: refers to strategies targeting distinct cell population or using different mechanisms of cell killing or inducing tumor regrowth delay
- Cytotoxic enhancement: this mechanism enhances cell killing by modulating the induction or processing of intracellular demage

SUMMARY:

- Rationale and mechanisms of action
- Non site-specific trials either with CFRT and AFRT
- Site-specific trials either with CFRT and AFRT
- Unanswered questions:
 - induction chemotherapy
 - predictive factors
 - optimal concurrent chemotherapy
 - integration with targeted therapy
 - acute and late toxicity

MACH-NC Collaborative Group

(Meta-Analysis of Chemotherapy on Head and Neck Cancer)

Trials performed in the period 1965-1993 to investigate the impact of chemotherapy associated to radiation therapy in patients with larynx, hypopharynx, oropharynx and oral cavity cancer.

MACH-NC Collaborative Group

Figure 4: Hazard ratio of death with locoregional treatment with or without chemotherapy by age, sex performance status, stage, or tumoural site.

Test for trend for age was significant (p=0.05).

Pignon JP et al, 2000

MACH-NC Collaborative Group

Trial category	Hazard ratio	Chemo-	Heterogeneity	Absolute benefit	
	(95% CI)	therapy effect (p)	(p)	At 2 years*	At 5 years*
Adjuvant	0.98 (0.85-1.19)	0.74	0.35	1%	1%
Neoadjuvant	0.95 (0.88-1.01)	0.10	0.38	2%	2%
Concomitant	0.81 (0.76-0.88)	<0.0001	<0.0001	7%	8%
Total	0.90 (0.85-0.94)	<0.0001	<0.0001	4%	4%

^{*}Assuming survival rates of 50% at 2 years and 32% at 5 years in control groups.

MACH-NC collaborative group

- Absolute survival benefit of 8% at 5 years with concurrent chemoradiation
- Platinum-based regimens are more effective than the others
- No significant difference in efficacy between mono- and multidrug platinum regimens
- In comparison with radiation alone, small reduction in distant metastasis with chemoradiation
- No difference between CT+ CFRT and CT+AFRT
- Inverse relationship between patient age and the impact of chemotherapy on treatment outcome: the benefit disappeared for patients > 70 years old

Pignon JP et al, 2000 Bourhis J et al, 2004 Pignon JP et al, 2007

Budach metanalysis

32 randomised trials testing curatively intended RT (= 60 Gy), published between 1975 and 2003. Trials comparing RT alone with concurrent or alternating chemoradiation were analysed.

Overall survival benefit of 12 months with CRT (any RT fractionation) (p<0.001)

Survival significant benefit (p<0.01) with all the drugs used, especially with 5FU (24 mo.) and with cisplatin (16.8 mo.)

Significant survival improvement (p< 0.001) with hyperfractionation in comparison with conventional fractionation RT (without CT)

GORTEC 99-02 trial 850 pts with locally advanced HNSCC

With a median f.up of 3.5 years, there was no difference between the 3 arms regarding LRC and survival.

PFS at 3 years was not different between the 2 chemotherapy arms, however PFS was significantly better in the conventional RT-CT arm as compared to the very Acc-RT (p<0.03)

SUMMARY:

- Rationale and mechanisms of action
- Non site-specific trials either with CFRT and AFRT
- Site-specific trials either with CFRT and AFRT
- Unanswered questions:
 - induction chemotherapy
 - predictive factors
 - optimal concurrent chemotherapy
 - integration with targeted therapy
 - acute and late toxicity

GORTEC 94-01 randomized trial in advanced-stage oropharynx carcinoma

Carboplatin 70 mg/m² days 1-4; 5-FU 600 mg/m² continous infusion days 1-4

GORTEC 94-01 randomized trial in advanced-stage oropharynx carcinoma

Denis F et al, 2004

GORTEC 94-01 randomized trial in advanced-stage oropharynx carcinoma

Table 2. Toxicity Scales Used for the Assessment of the Late Effect on Normal Tissues, and 5-Year Grade 3 to 4 Late Toxicity Rates of Combined Treatment Versus Radiation Alone According to the Organs Involved

	Late Toxicity Scales	Percentage of Patients (grade 3 to 4 toxicity)		
Organs	Involved	RT (n = 17)	RT + CT (n = 27)	Р
Neurological toxicity	NCI/CTC	0	0	NS
Taste	NCI/CTC	6	19	NS
Hearing	NCI/CTC	6	0	NS
Mandibula	NCI/CTC	0	6	NS
Teeth	NCI/CTC	12	4	NS
Xerostomia	RTOG/EORTC	18	15	NS
Skin and subcutaneous tissue	RTOG/EORTC	6	7	NS
Mucosa	RTOG/EORTC	18	15	NS

Abbreviations: RT, radiotherapy alone; RT + CT, radiotherapy and chemotherapy (concomitant radiotherapy); NCI/CTC, National Cancer Institute Common Toxicity Criteria; NS, not significant; RTOG/EORTC, Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema.

doi:10.1016/S0360-3016(03)01370-1

CLINICAL INVESTIGATION

Head and Neck

RADIOTHERAPY WITH CONCOMITANT WEEKLY DOCETAXEL FOR STAGES III/IV OROPHARYNX CARCINOMA. RESULTS OF THE 98-02 GORTEC PHASE II TRIAL

Gilles Calais, M.D.,* Etienne Bardet, M.D.,† Christian Sire, M.D.,‡ Marc Alfonsi, M.D.,§ Jean Bourhis, M.D.,^{||} Béatrix Rhein, M.D.,^{||} Jacques Tortochaux, M.D.,[#] Yooye Tao Kong Man, M.D.,** Hugues Auvray, M.D.,†† and Pascal Garaud, Ph.D.^{‡‡}

*Centre Hospitalier Universitaire, Tours, France; †Centre René Gauducheau, Nantes, France; ‡Centre Hospitalier, Lorient, France; §Clinique Sainte Catherine, Avignon, France; |Institut Gustave Roussy, Vellejuif, France; †Centre Hospitalier Universitaire, Limoges, France; #Centre Jean Perrin, Clermont-Ferrand, France; **Centre de Radiothérapie J. Belot, Montluçon, France; ††Centre Hospitalier, Moulins, France; ‡‡Département de Biostatistiques Université de Tours, Tours, France

63 patients treated with CFRT: 70 Gy in 35 fractions and seven cycles of Docetaxel (20 mg/m² each week) during the period of radiotherapy

Table 2. Compliance with radiotherapy				
Radiation parameter	RT + Docetaxel (n = 61)			
Mean overall treatment time, days (range)	49.8 (1-77)			
Treatment interruptions ≥3 days (%)	7 (11)			
Mean duration of treatment break,				
days (range)	6.2 (3-17)			
Radiotherapy stopped before completion,				
no (%)	2 (3%)			
Mean value of maximal tumor dose,				
Gy (range)	71.3 (4-82)			
Mean value of minimal tumor dose,	` /			
Gy (range)	66.5 (4-74)			

GORTEC 98-02 phase II trial

FNCLCC-GORTEC French phase III trial in unresectable pharyngeal carcinoma

Arm A

RT: 1.2 Gy /fraction b.i.d.

Total dose = 80.4 Gy in 46 days

Arm B

RT: 1.2 Gy /fraction b.i.d.

Total dose = 80.4 Gy in 46 days

+

Cisplatin 100 mg/m²/day, 1 D

5-FU 750 mg/m²/day, 1-5 D (1° cycle);

430 mg/m², 1-5 D (2° and 3° cycle)

Every 3 weeks; 3 cycle

171 patients were enrolled (163 assessable at time of analysis: **123** with oropharynx and 40 with hypopharynx cancer)

FNCLCC-GORTEC French phase III trial in unresectable pharyngeal carcinoma

Results in oropharynx patients by arm

Overall Survival

Specific Survival

FNCLCC-GORTEC French phase III trial: toxicity

Acute

Arm A Arm B						
Toxic effect	(n = 82)	(n = 81)	p			
Mucositis						
Grade 3	52 (63.4%)	62 (76.5%)	NS			
Grade 4	5 (6.1%)	5 (6.1%)				
Dermatitis						
Grade 3	22 (26.8%)	30 (37%)	NS			
Grade 4	0	1 (1.2%)				
Nausea and diarrhea						
Grade 3	0	5 (6.2%)	NS			
Grade 4	0	0				
Neutropenia						
Grade 3	2 (2.4%)	20 (24.7%)	< 0.05			
Grade 4	0	7 (8.6%)				
Early deaths	6 (7.3%)	11 (13.6%)	NS			

Table 4. Prevalence of gastrostomy tube in the two arms; before treatment; and 6, 12, and 18 months after primary treatment

Late

	A	Arm A		Arm B	
	Patients alive (Number)	Gastrostomies (Number and percentage)	Patients alive (Number)	Gastrostomies (Number and percentage)	
Before treatment	82	38/82 (43.4%)	81	54/81 (66.7%)	p = 0.009
6 months	41	2/41 (4.9%)	49	10/49 (20.4%)	p = 0.003
12 months	26	1/26 (3.8%)	39	3/39 (7.7%)	p = 0.7 (NS)
24 months	15	0/15 (0%)	28	1/28 (3.6%)	p = 1 (NS)

ORO 93-01 multicentric phase III trial in 192 patients with locoregionally advanced carcinoma of the oropharynx. Long-term results

Arm A = CFRT (66-70 Gy in 33-35 fr)

 $R \longrightarrow$

Arm B = S-AHR (64-67.2 Gy with 2 daily fractions of 1.6 Gy each; 2 weeks split-course after 38.4 Gy)

Arm C = CRT (CFRT + CT with Carboplatin 75 mg/m², days 1-4; 5-FU 1000 mg/m² i.v. over 96 h, days 1-4; recycling every 28 days)

	A	В	С	Sign
5 y OS	21%	21%	40%	n.s.
5y RFS	15%	17%	36%	n.s.
5y LRCS	21%	18%	48%	P=0.07
DM	14	9	11	n.s.

SUMMARY:

- Rationale and mechanisms of action
- Non site-specific trials either with CFRT and AFRT
- Site-specific trials either with CFRT and AFRT
- Unanswered questions:
 - induction chemotherapy
 - predictive factors
 - optimal concurrent chemotherapy
 - integration with targeted therapy
 - acute and late toxicity

1. With better locoregional control, is there a role for the reintroduction of induction chemotherapy in an effort to decrease distant metastases?

(Adelstein DJ, 2007)

Direct comparison: induction CT vs RT-CT concomitantly

	Nb of death/ Nb of pts included	HR (95% IC)	Interaction test
Locoregional controlCT-RTInduction CT	4882/9615 2189/5311	0.74 (0.70-0.79) 1.03 (0.95-1.13)	p < 0.0001
Distant metastases • CT-RT • Induction CT	949/8612 444/3875	0.88 (0.77-1.00) 0.73 (0.61-0.88)	p = 0.12

Data from MACH-NC

Phase II Trial of Chemoradiation for Organ Preservation in Resectable Stage III or IV Squamous Cell Carcinomas of the Larynx or Oropharynx: Results of Eastern Cooperative Oncology Group Study E2399

Cmelak AJ, 2007

Docetaxel/Cisplatin/5-FU vs Cisplatin/5-FU Sequential Therapy in Advanced SCCHN: Randomized Phase III trials

TRIAL	INCLUSION CRITERIA	N° CYCLES OF ICT	RADIOTHERAPY
EORTC 24971/TAX 323*	Unresectable stage III-IV	4	RT alone (CFRT or AFRT)
TAX 324**	Resectable or unresectable stage III-IV	3	CFRT + Carboplatin AUC 1.5 weekly

- <u>TAX 323</u>: median PFS 11 months in the TPF group and 8.2 months in the PF group (p=0.007); while median OS was 18.8 months vs 14,5 months (p=0.02)
- TAX 324: In the TPF group better survival (p= 0.006) and better LRC (p= 0.04) than PF group.
- More grade 3 or 4 events of leukopenia and neutropenia in the TPF group

Docetaxel-cisplatin based induction chemotherapy (ICT) in locally advanced head and neck cancer (LAHNC):

A meta-analysis of randomized controlled trials (RCTs) using indirect comparisons

	Overall survival RR [95% CI]	Progression-free survival RR [95% CI]
Decetavel based ICT (TDE TD)	0.79 [0.69;0.91]	0.72 [0.61;0.84]
Docetaxel-based ICT (TPF,TP) Vs PF ICT	k=4	k=2
VS PF 1CI	n=1154	n=859
TDF ICT	0.78 [0.68;0.90]	0.72 [0.61;0.84]
TPF ICT Vs PF ICT	k=3	k=2
VS PF 1CI	n=1072	n=859
DE ICT	0.89 [0.82;0.97]	0.91 [0.82;1.00]
PF ICT	k=15	k=3
Vs no ICT	n=2785	n=857
Extrapolated docetaxel-based	0.70	0.66
ICT	[0.60;0.83]	[0.54;0.79]
Vs no ICT	[0.00,0.03]	[0.54,0.75]
Extrapolated TPF	0.69	0.66
Vs no ICT	[0.59;0.82]	[0.54;0.79]

2. Can we identify those patients most likely to benefit from this treatment approach?

(Adelstein DJ, 2007)

ECOG 2399: efficacy by HPV status

	HPV+	HPV-	P value
Response			
- induction	82%	55%	.01
- protocol	84%	57%	.007
2-Years PFS	86%	53%	.02
2-Years OS	95%	62%	.005

Response rates in HPV cases: 58% vs 52% during induction and 54% vs 59% final for oropharynx and larynx respectively

Combined analysis of HPV-DNA, p16, and EGFR expression to predict prognosis in oropharyngeal cancer

Conclusions:

- p16 expression is highly correlated with the presence of HPV-DNA
- Univariate analysis revealed a significant better outcome for patients with p16-positive and EGFR-negative tumors
- In multivariate analysis p16 remained a highly significant prognostic marker for DFS and OS

3. Is single-agent cisplatin the optimal concurrent chemotherapy regimen?

(Adelstein DJ, 2007)

Cisplatin 100 mg/m² every 3 weeks is the more largely used scheme in phase III trials, but the compliance of this schedule is low and there are a few trials comparing different CT schedules.

CRT compromised adherence to CT

The number of patients receiving cisplatin on time without delay decreased over time

Treatment cycle

Patient compliance with CT (%)

Intergroup phase III trial in unresectable HNSCC

Major end-point = OS

Table 2. Clinical Characteristics					
		Arm			
	A (n = 95)	B (n = 87)	C (n = 89)		
Age (years)					
Mean (range)	56.7 (33-38)	56.8 (25-80)	57.8 (27-78)		
Sex					
Male	86 (90.5%)	76 (87.4%)	76 (85.4%)		
Female	9 (9.5%)	11 (12.6%)	13 (14.6%)		
Race					
White	61 (64.2%)	53 (60.9%)	55 (61.8%)		
African American	24 (25.3%)	28 (32.2%)	26 (29.2%)		
Other	10 (10.5%)	6 (6.9%)	8 (9.0%)		
Performance status					
0	32 (33.7%)	27 (31.0%)	32 (36.0%)		
1	63 (66.3%)	60 (69.0%)	57 (64.0%)		
Primary tumor site					
Oral cavity	16 (16.8%)	11 (12.7%)	9 (10.2%)		
Oropharynx	52 (54.7%)	52 (59.8%)	56 (62.9%)		
Hypopharynx	19 (20.0%)	17 (19.5%)	14 (15.7%)		
Larynx	8 (8.5%)	7 (8.0%)	10 (11.2%)		

Adelstein DJ et al, 2003

Intergroup phase III trial in unresectable HNSCC

RESULTS

	CR	Sign	3y OS	Sign	DFS	Sign
А	27.4%		23%		33%	
В	40.2%	B <i>v</i> A: p=0.07	37%	B <i>v</i> A: p=0.014	51%	B <i>v</i> A: P=0.01
С	49.4%	C <i>v</i> A: p=0.002	27%	CvA and CvB: n.s.	41%	CvA and CvB:n.s.

Nausea and vomiting were significantly worse for patients enrolled on arm B, the high-dose cisplatin arm.

When all grade 3, 4, and 5 toxicities are combined, arm B seemed most toxic.

4. How do we integrate targeted therapies into these concurrent chemoradiotherapy programs?

Adelstein DJ, 2007

Radiotherapy only vs radiotherapy + cetuximab in 424 patients with stage III-IV H&N cancer (oropharynx = 253/ 424 patients)

	RT only Median duration (mo)	RT+ cetuximab Median duration (mo)	Sign
LRC	14.9	24.4	P=0.005
LRC (oropharynx)	23	49	
PFS	12.4	17.1	P=0.006
OS	29.3	49	P=0.03
OS (oropharynx)	30.3	>66	

Bonner JA et al, 2006

RTOG phase III 0522 trial

Stage III-IV SCC of:

- Oropharynx
- Hypopharynx
- Larynx

Statify:

- Larynx vs others
- N0-N1, 2a,2b vs N2c-3
- 3-D vs IMRT
- Pre-Rx PET (yes vs no)

CERCEFA phase II Italian trial

Major end-points: LRC and toxicity

<u>Inclusion criteria</u>: resectable and unresectable stage III and IV oral cavity, oropharynx, hypopharynx, larynx and nasopharynx carcinomas

Design:

TPF: Docetaxel 75 mg/m² D1; Cisplatin 25 mg/m² D1-3; 5 FU 250 mg/m² D 1-3 q3w x2

CETUXIMAB 400 mg/m² 1st week; from 2nd week 250 mg/m² weekly concomitant to RADIOTHERAPY (70-72 Gy/35-36 fx)

Coordinator: U. Ricardi (Torino)

GSTTC Italian phase III trial

Coordinator: A. Paccagnella

5. How can we reduce and manage both the acute and the consequential late toxicities of concurrent chemoradiotherapy?

(Adelstein DJ, 2007)

- Knowledge of incidence of acute and late toxicity
- Knowledge of variables involved in incidence of toxicity
- Optimization of radiotherapy (IMRT?)
- Optimization of chemotherapy

Analysis of 230 patients receving CRT in 3 studies (RTOG 91-11, 97-03,99-14)

Table 3 Univariate and multivariate logistic regression analyses with grade 2-4 RTOG swallowing dysfunction at 6 months as primary endpoint. Variable Number with grade 2 4 RTOG swallowing % Univariate analysis Odds ratio (95% CI) P-value Sex Male 83 20.9% 1.00 39 29.8% 1.61 Female (1.03-2.51)p = 0.037Age 54 >60 years 18.8% 1.00 18-60 years 68 28.2% 1.70 (1.13 - 2.56)p = 0.010T-classification 51 14.3% 1.00 TO, Tis-T2 T3-T4 71 41.0% 4.16 p < 0.001(2.73-6.36)N-classification 48 14.4% 1.00 NO N1-N2b 44 32.1% 2.81 (1.75 - 4.50)p < 0.001N2c-N3 30 50.8% 6.14 (3.39 - 11.1)p < 0.001Primary site 27 11.4% 1.00 Larynx 16 17.8% 1.67 (0.85 - 3.28)Oral cavity p = 0.134Univariate analysis Oropharynx 52 40.0% 5.16 (3.02 - 8.79)p < 0.001Nasopharynx 10 50.0% 7.74 (2.95 - 20.3)p < 0.0019 3.48 Hypopharynx 31.0% (1.44 - 8.42)p = 0.006Unknown primary 8 33.3% 3.87 (1.51 - 9.89)p = 0.005Treatment modality 29 1.00 Postoperative radiotherapy 20.7% 14 Radiotherapy conventional fractionation 9.8% 0.42 (0.21 - 0.83)p = 0.012Accelerated radiotherapy 49 25.5% 1.31 (0.78 - 2.21)p = 0.308Concomitant chemoradiation 30 55.6% 4.78 (2.44 - 9.39)p < 0.001Radiation technique Conventional 3D-CRT 86 19.5% 1.00 Bellinzona technique 19 55.9% 5.23 (2.55-10.7)p < 0.00117 IMRT 31.5% 1.90 (1.02 - 3.53)p = 0.043Neck irradiation 9 1.00 Local or unilateral irradiation 4.7% Bilateral irradiation 113 33.3% 10.01 (4.96-20.4)p < 0.001Baseline swallowing (grading according to RTOG) Grade 0 100 21.2% 1.00 22 Grade 1 38.6% 2.34 (1.31 - 4.16)p = 0.004Weight loss (baseline) 65 16.3% 1.00 No weight loss 28 38.9% 3.28 1-5% (1.91 - 5.65)p < 0.0016-10% 18 48.6% 4.88 (2.43 - 9.81)p < 0.001>10% 11 55.0% 6.30 (2.51-15.8)p < 0.001

Covariate	Univariate Analysis		Multivariate Analysis		
	Odds Ratio	Р	Odds Ratio	95% CI	Р
Age					
Continuous variable	1.043*	.0038	1.05*	1.02 to 1.09	.001
Sex					
Female	RL				
Male	1.140	.6846			
Race					
Nonblack	RL				
Black	1.165	.7458			
KPS					
60-90	1.892	.0612			
90-100	RL				
Hemoglobin, g/dL					
Continuous variable	1.005	.9528			
Weight loss, kg					
Continuous variable	1.018	.3733			
T stage					
T1/T2	RL		RL		
T3/T4	2.041	.0349	3.07	1.444 to 6.54	.0036
N stage					
NX/NO/N1	RL				
N2	0.942	.8464			
N3	1.297	.6108			
Tumor site					
Oral cavity/oropharynx	RL		RL		
Larynx/hypopharynx	2.955	.0131	4.17	1.57 to 11.03	.0041
BED (toxicities) based on actual dose/Fx, Gy					
Continuous variable	0.842	< .0001			
Neck dissection after RT†					
Yes	1.632	.145	2.39	1.16 to 4.92	.018
No	RL		RL		
Chemotherapy received relative to the protocol amount, %					
< 85	1.033	.9216			
≥ 85	RL				

Abbreviations: KPS, Karnofsky performance status; RL, reference level; BED, biologically equivalent dose; Fx, fraction; RT, radiation therapy.

[&]quot;The odds ratio of 1.043 for age indicates that for each one year increase in age, patients have 1.043 times higher odds of being in the case group (having a severe late toxicity) than being in the control group (not having a severe late toxicity).

[†]This excludes two patients who had neck dissection after having already experiencing a severe late toxicity.

Predictive model for swallowing disfunction

		an (n)	0.5	0.000 (0.000)		The state of
Variable	В	SE(B)	OR	95% CI (OR)	P-value	Risk points
T-classification						
T1-T2			1.00			0
T3-T4	0.868	0.288	2.38	(1.36-4.19)	p = 0.003	4
Neck irradiation						
Primary alone ± ipsilateral neck			1.00			0
Primary + both necks	1.715	0.404	5.55	(2.52-12.2)	p < 0.001	9
Weight loss (baseline)						
No weight loss			1.00			0
1-5%	0.981	0.324	2.67	(1.41-5.03)	p = 0.002	5
6-10%	1.053	0.417	2.87	(1.27-6.49)	p = 0.012	5
>10%	1.324	0.545	3.76	(1.29-10.9)	p = 0.015	7
Primary tumour site						
Larynx			1.00			0
Oropharynx	1.376	0.340	3.96	(2.03-7.70)	p < 0.001	7
Nasopharynx	1.816	0.498	6.15	(1.89-20.0)	p = 0.003	9
Treatment modality						
Conventional radiotherapy			1.00			0
Accelerated radiotherapy	1.170	0.371	3.22	(1.56-6.67)	p = 0.002	6
Concomitant chemoradiation	0.975	0.415	2.65	(1.17-5.98)	p = 0.019	5

Predictive model for swallowing disfunction

Conclusions

- Platinum based CRT is the standard treatment of advanced H&N cancer and also in organ preservation strategy
- Concurrent CRT did not show any benefit in terms of survival in patients > 70y
- Concurrent AFRT+CT seems not to produce any advantage compared to CFRT+CT, but further investigations are needed
- Although concurrent CRT significantly improves LC, DFS and OS, the incidence of distant metastases remains disappointing
- There are ongoing trials focusing on the role of cetuximab and RT, and on the role of induction CT
- Patients selection, development of new technologies, and multidisciplinary approach aim at reducing severe acute and late toxicity