Advanced/Metastatic disease: the role of biological and molecular factors in oropharyngeal carcinoma

Salvatore Grisanti, MD, PhD Unità di Oncologia Medica & Fondazione Beretta Azienda Spedali Civili di Brescia

Michela Buglione di Monale e Bastia, MD Cattedra di Radioterapia, Istituto del Radio Università degli Studi di Brescia

Overview

- defining the problem: progression, relapse and metastases in HNSCC
- therapeutic options in advanced disease
- the knowledge "gap" in front line treatment
- cellular heterogeneity in HNSCC: cancer stem cells and CTC
- molecular heterogeneity in HNSCC: gene expression profiles

Advanced disease in HNSCC: epidemiology

- locally advanced disease at diagnosis (AJCC stage III, IVa, IVb): 60%
- metastatic disease at diagnosis (AJCC stage IVc): 5%

Gibson MK et al. Lancet Oncology 2006;7:565-574

Advanced disease in HNSCC: outcome

- limited stage disease at diagnosis (AJCC stage I, II): 35%
- locally advanced disease at diagnosis (AJCC stage III, IVa, IVb): 60%
 - 50% locoregional control
 - 35% locoregional progression
 - 15% distant metastases
- metastatic disease at diagnosis (AJCC stage IVc): 5%
 - treatment-sensitive: median survival 6-8 months
 - treatment-refractory: median survival 3 months

Gibson MK et al. Lancet Oncology 2006;7:565-574

Advanced disease in HNSCC: outcome

Stage	% Failure (progression/relapses)		
I	>10		
II	30		
III	50		
IV	70		

Prince MEP et al. JCO 2009;26:2871-2879

Advanced disease in HNSCC: to sum up

- advanced disease at diagnosis: >50%
- despite good locoregional control, relapse in >50%
- 5-year survival rate: 10-40%
- heterogeneous disease: oral cancer 3-yrs survival 47%

oropharyngeal cancer 3-yrs survival 67%

Kumar B et al. Int J Radiat Oncol Biol Phys 2007;69:109-111

Therapeutic options for recurrent disease

- salvage surgery +/- re-irradiation
- re-irradiation alone
- chemotherapy

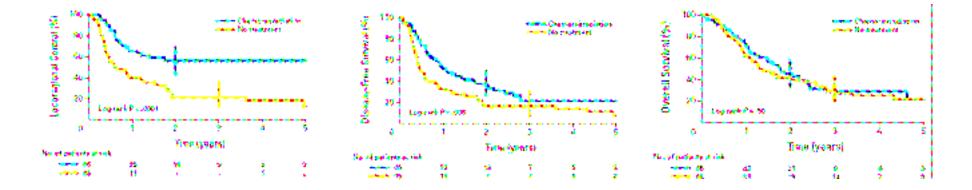
Gibson MK et al. Lancet Oncology 2006;7:565-574

Therapeutic options for recurrent disease (I): salvage surgery

- feasible in a limited number of patients (approx. 20%)
- high rate of locoregional failure (approx. 50%)
- high risk of distant M+ (approx. 15%)

Wong SJ et al. JCO 2008;26:5500-5501

Therapeutic options for recurrent disease (II): re-irradiation +/- CT


- feasible and effective in selected cases
- useful at high doses (60 Gy)
- improvement in locoregional control and DFS but not OS
- treatment-related toxicity (and toxic deaths) major concern

Wong SJ et al. JCO 2008;26:5500-5501

Therapeutic options for recurrent disease (II): re-irradiation +/- CT

Randomized Trial of Postoperative Reirradiation Combined With Chemotherapy After Salvage Surgery Compared With Salvage Surgery Alone in Head and Neck Carcinoma

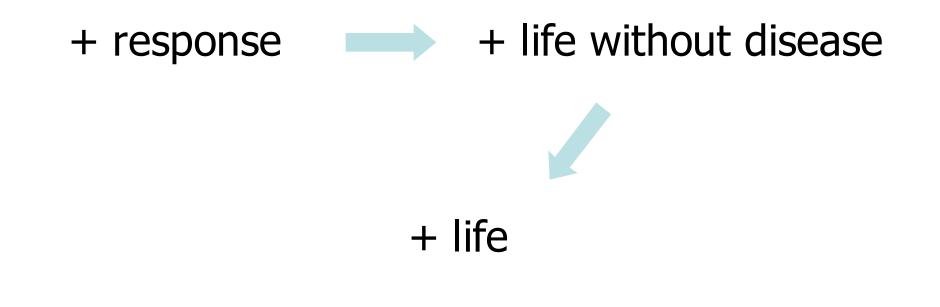
François Janot, Dominique de Raucourt, Ellen Benhamou, Christophe Ferron, Gilles Dolivet, René-Jean Bensadoun, Marc Hamoir, Bernard Géry, Morbize Julieron, Marine Castaing, Etienne Bardet, Vincent Grégoire, and Jean Bourhis

Janot F et al. JCO 2008;26:5518-5523

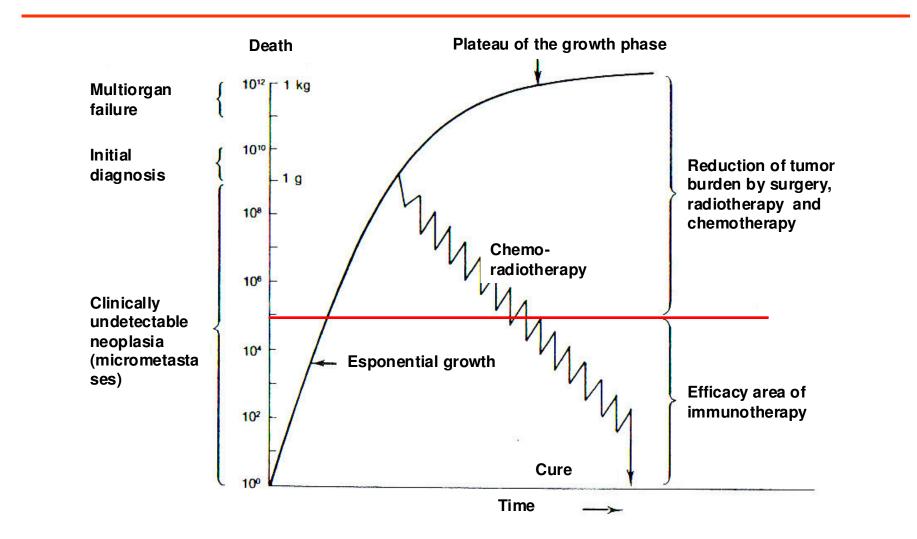
Therapeutic options for recurrent disease (III): Chemotherapy

- in historical series, modest benefit over BSC
- Cisplatin alone: RR 15%
- Cisplatin+Fluorouracil: RR 30%
- CDDP+Taxanes: RR 33-67%
- CDDP+Cetuximab: RR 23%
- Paclitaxel+Cetuximab: RR 70%
- Cetuximab alone: RR 13%

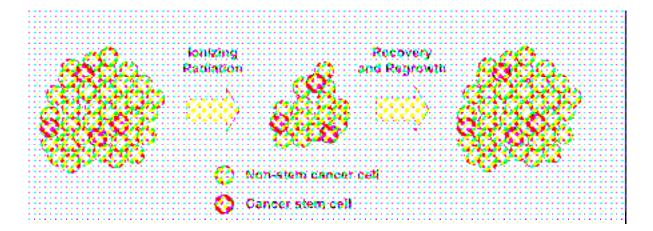
No one of these schedules translates in OS benefit!


Licitra L et al. Ann Oncol 2008;19:200-203

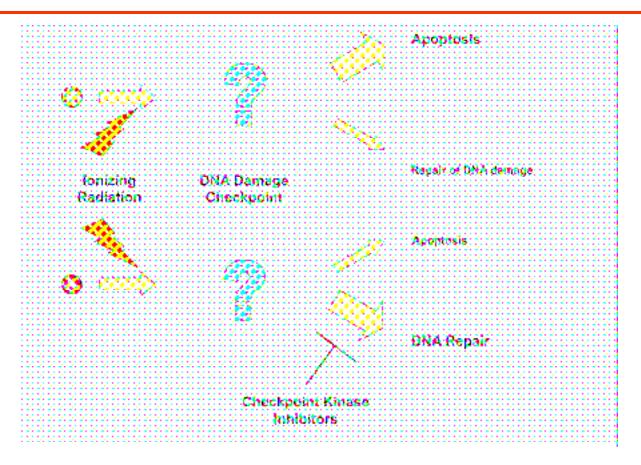
Therapeutic options for recurrent disease (IV): Chemotherapy+anti-EGFR (EXTREME trial)


- Phase III trial of CDDP/Fluorouracil +/- Cetuximab
- RR 36% vs 20%
- PFS and OS benefit
- but no benefit if PS<80 and age>70

First evidence of OS benefit offered by CT in the recurrent/metastatic setting in the last 25 years !


The "surrogacy" rationale of treatment

The "surrogacy" rationale of treatment



Repopulation of cancer cells as cause of treatment failure

Kim JJ and Tannock IF Nat Rev Cancer 2005;5:516-525 Rich JN Cancer Res. 2007;67:8980-8984

Repopulation of cancer cells as cause of treatment failure

Kim JJ and Tannock IF Nat Rev Cancer 2005;5:516-525 Rich JN Cancer Res. 2007;67:8980-8984

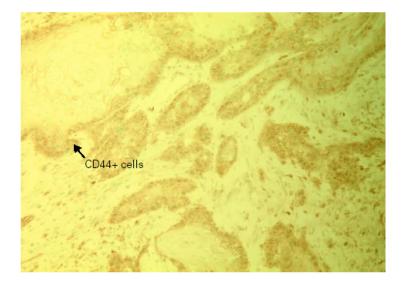
Repopulation of cancer stem cells as cause of treatment failure

Baumann M et al. Nature Rev Cancer 2008;8:545-554

Identification of cancer stem cells in HNSCC

Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma

M. E. Prince*, R. Sivanandan* A. Kaczorowski*, G. T. Wolf*, M. J. Kaplan*, P. Dalerba*, I. L. Weissman*, M. F. Clarke*, and L. E. Ailles**


*Department of Otolaryngology-Head and Neuk Surgery, University of Michigan, Ann Arbur, MI 48109; and "Department of Otolaryngology-Head and -Neot Surgery and "Stantord Institute for Stem Celi Biology and Regenerative Medicuse, Stanford University School of Medicus, Stanford, CA 94039

CSC in HNSCC: <10% of the cancer cells

Phenotype: CD44+, cytokeratin 5 and 14 (basal cell markers), BMI1+

Prince ME et al. PNAS 2007;104:973-978

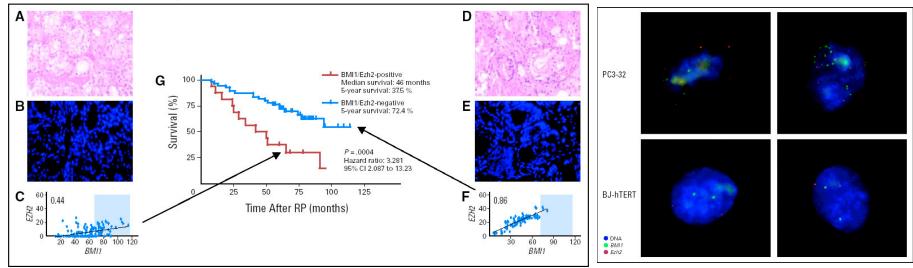
Identification of cancer stem cells in HNSCC

CD44+ (red) / BMI1 (green)

CSC in HNSCC are localized in microdomains associated with the tumor stroma BMI-1 is a stem cell-related gene (others: Wnt, Notch, PTEN, Hedgehog)

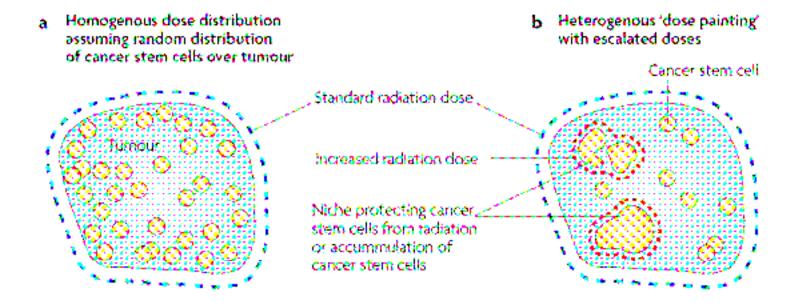
Prince ME et al. JCO 2008;26:2871-2875

Identification of cancer stem cells in HNSCC


VOLUME 26 · NUMBER 17 · JUNE 10 2008

JOURNAL OF CLINICAL ONCOLOGY

REVIEW ARTICLE


"Stemness" Genomics Law Governs Clinical Behavior of Human Cancer: Implications for Decision Making in Disease Management

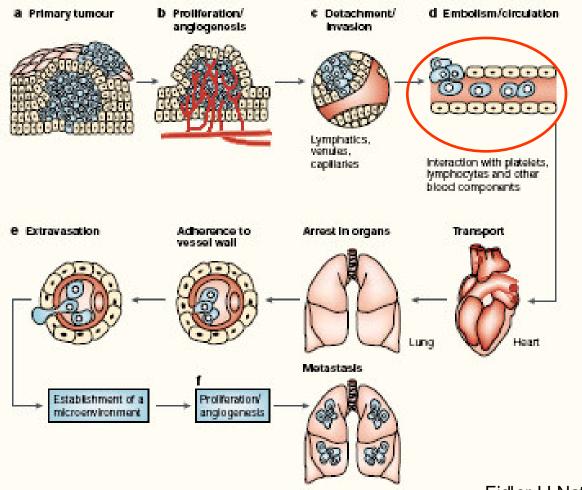
Gennadi V. Glinsky

Glinsky GV. JCO 2008;26:2846-2853

Importance of cancer stem cell niches in RT treatment planning

Baumann M et al. Nature Rev Cancer 2008;8:545-554

Is this relevant in HNSCC?


- limited stage disease at diagnosis (AJCC stage I, II): 35%
- locally advanced disease at diagnosis (AJCC stage III, IVa, IVb): 60%
 - 50% locoregional control
 - 35% locoregional progression
 - 15% distant metastases
- metastatic disease at diagnosis (AJCC stage IVc): 5%
 - treatment-sensitive: median survival 6-8 months
 - treatment-refractory: median survival 3 months

Clinical implication of CSCs in HNSCC

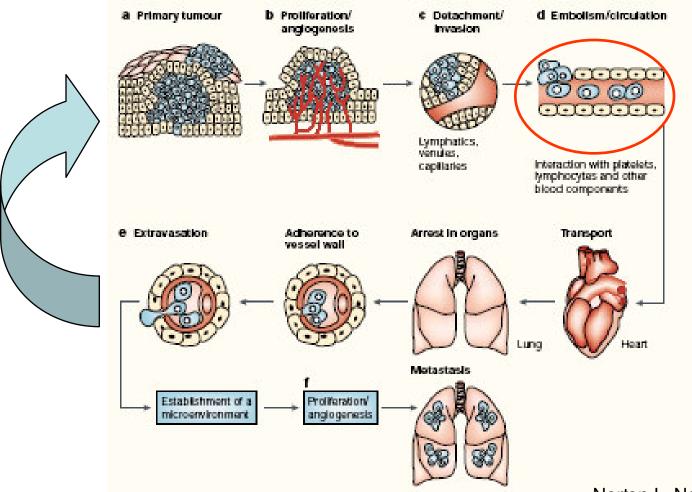
"It would seem that every time we treat a noncurable cancer, we increase the density of cancer stem cells and facilitate cancer to become more resistant"

Ajani JA et al. JCO 2008;19:162-163

Metastatic multistep process

Circulating Tumor Cells: background

• CTCs in the blood of patients with solid tumors have been described more than 100 years ago

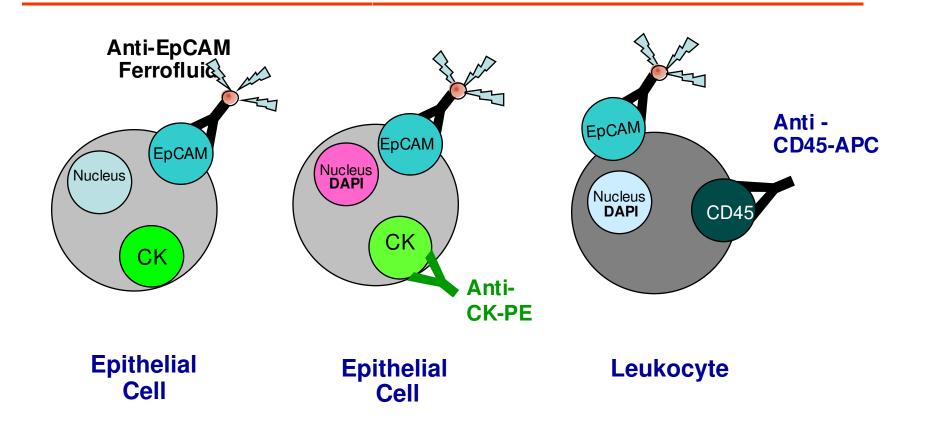

 In cancer patients CTCs can reach the peripheral blood every few hours and can remain for long periods

• They represent the first step of the (highly inefficient) metastatic process

Circulating Tumor Cells: open questions

- are CTCs responsible for metastases?
- are CTCs tumorigenic (cancer stem cells)?
- are CTCs responsible for primary tumor repopulation? (Self seeding hypothesis of tumors – L. Norton)

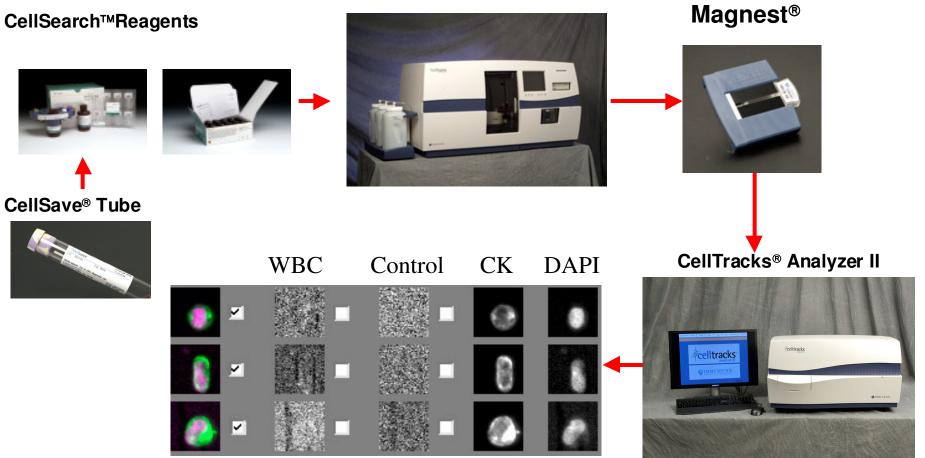
Self seeding hypothesis



Norton L. Nature Medicine 2006

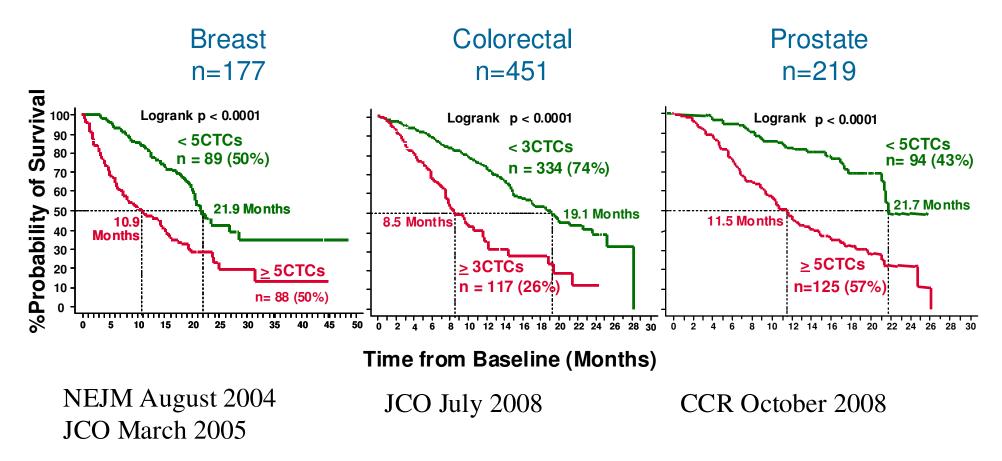
Is this relevant in HNSCC?

- limited stage disease at diagnosis (AJCC stage I, II): 35%
- locally advanced disease at diagnosis (AJCC stage III, IVa, IVb): 60%
 - 50% locoregional control
 - 35% locoregional progression
 - 15% distant metastases
- metastatic disease at diagnosis (AJCC stage IVc): 5%
 - treatment-sensitive: median survival 6-8 months
 - treatment-refractory: median survival 3 months


CellSearch Technology: criteria to define a CTC

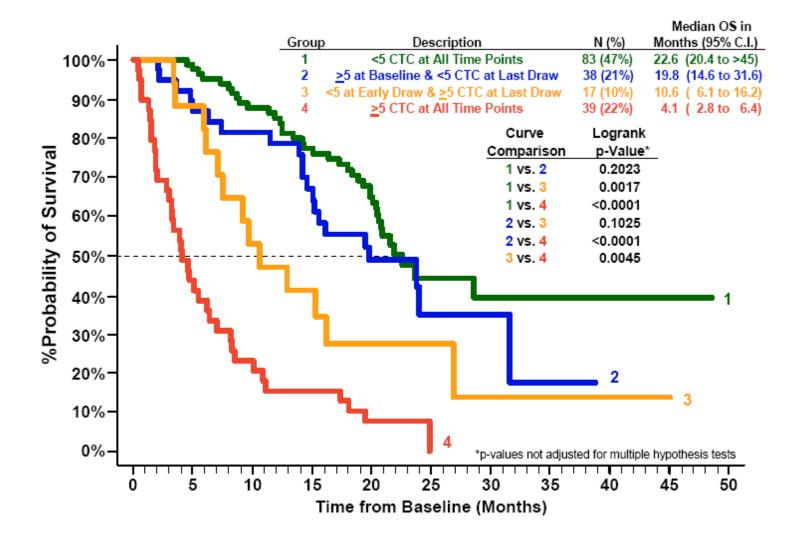
Criteria for CTC definition: EpCAM+, Cytokeratins 8, 18, 19+, DAPI+, CD45-

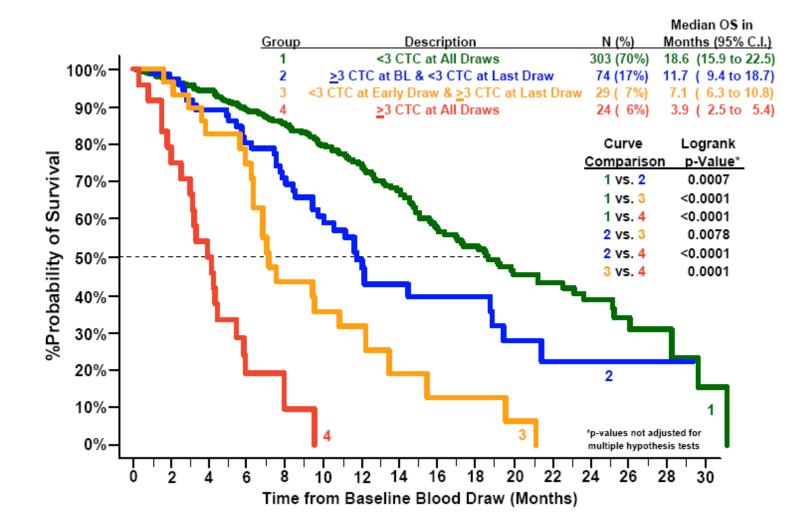
CellSearch: Technology


CellTracks® AutoPrep System

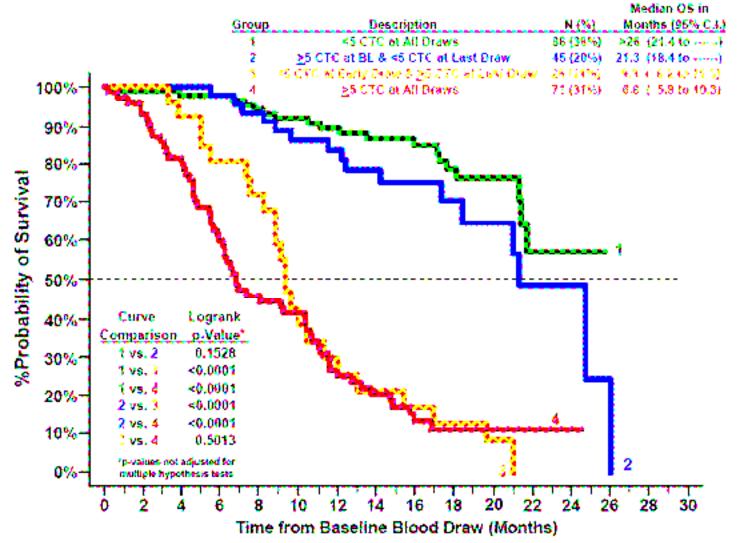
FDA Approval 2004

CTCs are predictive of OS


Metastatic Carcinomas


OS comparison in MBC, MCRC, MPC

	MBC	MCRC	MPC
<pre></pre>	22.6	18.6	>26
$\sum_{\substack{0 \le 10^{-5} \le 10^{-$	4.1	3.9	6.8
$\sum_{000\\000\\000\\000\\000\\000\\000\\000\\000\\0$	19.8	11.7	21.3
<pre></pre>	10.6	7.1	9.3


CTCs are dynamic predictors of OS in MBC

CTCs are dynamic predictors of OS in MCRC

CTCs are dynamic predictors of OS in MPC

CTCs in HNSCC: background (I)

Application of Immunomagnetic Cell Enrichment in Combination with RT-PCR for the Detection of Rare Circulating Head and Neck Tumor Cells in Human Peripheral Blood

Xiaodong Tong,¹ Liying Yang,¹ James Campbell Lang,² Maciej Zborowski,³ and Jeffrey J. Chalmers^{1,4*}

- 3 HNSCC cell lines
- immunomagnetic cell sorter and RT-PCR

CTCs in HNSCC: background (II)

Micrometastatic Tumor Detection in Patients With Head and Neck Cancer

A Preliminary Report

Ari Wirtschafter, MD; Michael S. Benninger, MD; Thomas J. Moss, MD; Tehila Umiel, PhD; Kathleen Blazoff, MSN, RN; Maria J. Worsham, PhD

- 18 pts, stage I-IV
- immunocytochemistry and EpCAM positive-selection (ICC assay)
- CTCs documented in 8 pts (44%)

CTCs in HNSCC: background (III)

Detection of Rare Disseminated Tumor Cells Identifies Head and Neck Cancer Patients at Risk of Treatment Failure

Max Partridge,¹ Ruud Brakenhoff, Elaine Phillips, Kulsan Ali, Rebecca Francis, Richard Hooper, Kenneth Lavery, Andrew Brown, and John Langdon

- 40 pts, stage I-IV, blood and bone marrow
- immunocytochemistry for E48 antigen
- CTCs documented in 10/40 pts, predictive of distant M+ and poor OS

CTCs in HNSCC: preliminary results in Brescia

- 18 pts, stage III-IV
- immunocytochemistry and EpCAM, Cytokeratin 8, 18, 19, DAPI+, CD45-

Characteristics	N. pts		
Site of T	13		
Oropharynx	2		
Nasopharynx	1		
Laryngopharynx	5		
Larynx	1		
Esophagus			
Histology			
Squamous	20		
Indifferentiated	2		
Stage			
III-IVA-IVB	13		
IVC	9		

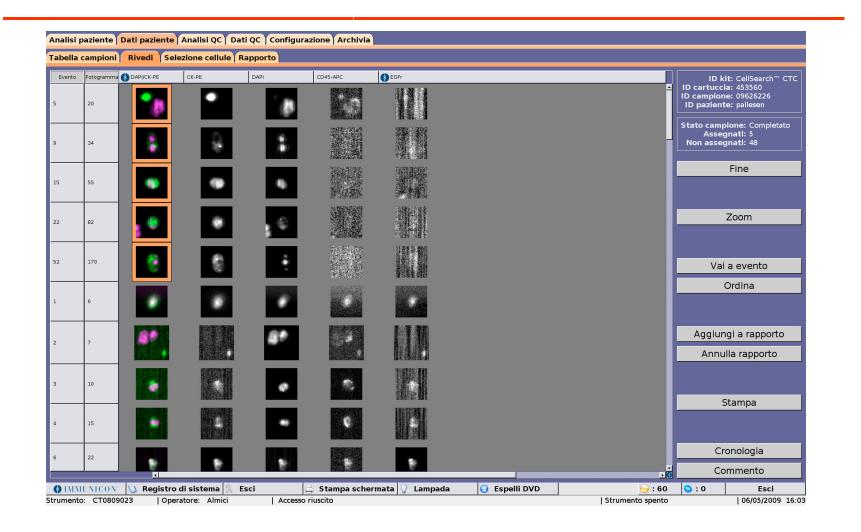
CTCs in HNSCC: preliminary results in Brescia

• Pt #1 stage IVa oropharynx

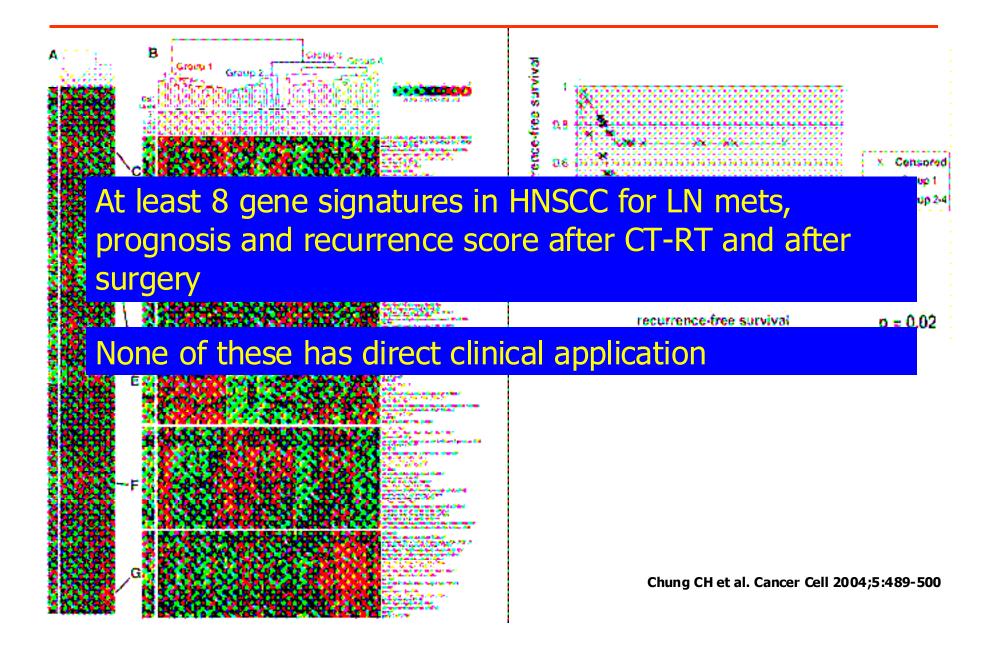
• basal:	aggregates	
• after 1 cy TPF:	3 cells/7.5 mL	cPR(50%)
• after 2 cy TPF:	0 cells/7.5 mL	cCR

- Pt #2 stage IVc oropharynx (tonsil) with M+ (lung, liver and bone) in PD
 - basal: 25 cells/7.5 mL dead after 1 mo

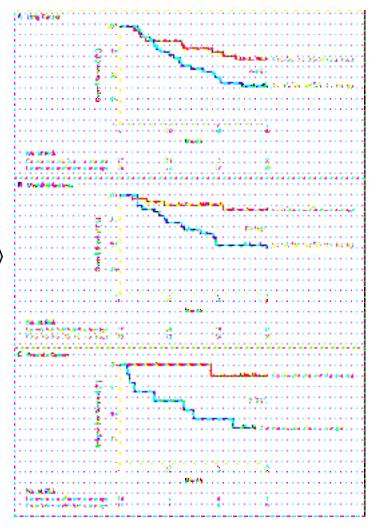
CTCs in HNSCC: preliminary results in Brescia


• Pt #3 stage IVc oropharynx with M+ lymphnods (axilla + mediastinum)

• basal:	3 cells/7.5 mL	on chemo
 after 4 cy MTX/FU: 	9 cells/7.5 mL	PD
 after 1 cy CTX/FU: 	5 cells/7.5 mL	SD


CTCs in HNSCC: are EGFR+? Cell line SKBR EGFR+ in normal PB

CTCs in HNSCC: are EGFR+? Peripheral blood from patient #3



Gene profiling of HNSCC

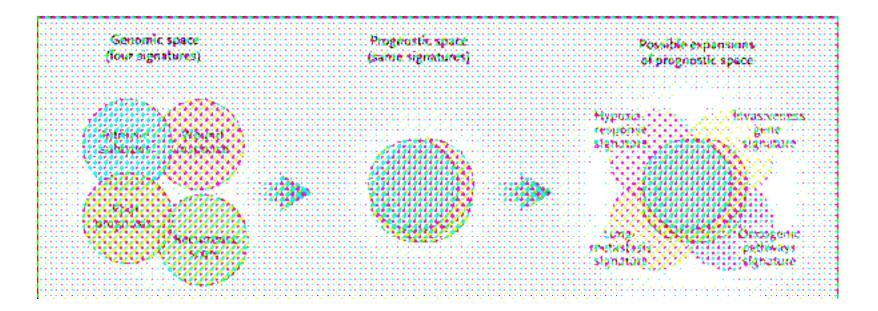

Prognostic value of invasiveness gene signature

Table 1. Classification of the 186 Genes in the Invasiveness Gene Signature (IGS).				
Class	Genes			
Apoptosis	DPF2, CASP8, BCL2			
Calcium-ion binding	SCGN, SWAP70, KIAA0276			
Cell cycle	C10orf9, C10orf7, ALKBH, TOB2			
Cell-surface receptor	XPR1, CD59, LRP2			
Chemotaxis	PLP2, MAPK14, CXCL2			
Collagen catabolism	ММР7			
Differentiation	MGP, MLF1, FLNB			
Ion-channel activity	SCNM1			
Membrane protein	HSPC163, C5orf18, MGC4399, CDW92, TMC4, ZDHHC2, TICAM2, KDELR3			
Metabolism	GNPDA1, THEM2, DBR1, FLJ90709, FLJ10774, C16off33, GAPD, LDHA, MR-1, LARS, GTPBP1, PRSS16, WFDC2, AIM1, DHRS6, DHRS4, MGC15429, MGC45840, ECHDC2, GOLGIN-67, AFURS1, KIAA0436, CYP4V2, JTV1			
Methyltransferase	ICMT, DNMT3A, HNMT, METTL7A, METTL2			
Morphology	VIL2, TPD52, ARPC5			
Nucleotide binding	NOL8, NSF, RAD23B, SRP54, HSPA2, PBP, THAP2, CIRBP, SNRPN, KIAA0052			
Phosphatase	DUSP10			
Proliferation	SSR1, ERBB4, EMP1, CHPT1, LRPAP1			
Protein binding	FLJ11752, CSTF1, KLHL20, DNAJC13, APLP2, ARGBP2, DNAJB1, NEBL, SH3BGRL, NUDT5, GABARAPL1, MAPT, DCBLD1			
Protein kinase	STK39, PAK2, CSNK2A1, PILRB, ERN1, SGKL, WEE1, MAST4, C11of17			
Protein transport	NUP37, CLTC, COPB2, SLC25A25			
Signal transduction	ECOP, PDE8A, STAM, TUBB, SNX6, RAB23, PLAA, STC2, LTF			
Transcription factor	ISGF3G, ATXN3, GTF3C3, GSK3B, KLF10, ELL2, ZBTB20, IRX3, ETS1, SERTAD1, MGC4251, MAFF, SFPQ, CITED4, CEBPD, EIF4E2			
Transferase	HS2ST1, AGPS, PGK1, ATIC, ETNK1, ALG2			
Ubiquitination	NCE2, MARCH8, CNOT4, RNF8, PSMA5, DPF2			
Function unknown	AMMECR1, KIAA1287, LOC144233, LOC286505, PNAS-4, FLJ20530, THUMPD3, MGC45564, CAP350, ETAA16, HAN11, DNAPTP6, C7orf25, FLJ37953, FLJ10587, C7orf36, ELP4, NDEL1, NPD014, DKFZP564D172, FAM53C, IER5, LOC255783, KIAA0146, KIAA0792, LOC439994, LOC283481, CG018, LOC130576, NGFRAP1L1, KIAA1217, C4orf7, C21orf86, C9orf64, FLJ13456, KIAA1600, B7-H4, LOC80298, C7orf2, NUCKS, DKFZP566D1346, LOC388279, FLJ31795, C6orf107, FLJ12439, FLJ12806, FLJ39370			

Liu R et al. NEJM 2007;356:217-226

Prognostic value of different gene signatures

Massaguè J et al. NEJM 2007;356:294-297

Prognostic value of different gene signatures

Hanahan and Weinberg. Cell 2000

Gene profiling of HNSCC: the Agendia[™] TargetPrint Discovery Gene Panel

Unigene Symbol'	UniGene Cluster ID	Unigene Name	Unigene Symbol'	UniGene Cluster ID	Unigene Name
AKT1	Hs.525622	V-akt murine thymoma viral oncogene homolog 1	IGF1R	Hs.592020	Insulin-like growth factor 1 receptor
AURKA	Hs.250822	Aurora kinase A	IGF2R	Hs.487062	Insulin-like growth factor 2 receptor
BCL2	Hs.150749	B-cell CLL/lymphoma 2	KDR	Hs.479756	Kinase insert domain receptor (a type III receptor tyrosine kinase)
BRAF	Hs.550061	V-raf murine sarcoma viral oncogene homolog B1	кіт	Hs.479754	V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
BRCA1	Hs.194143	Breast cancer 1, early onset	KRAS	Hs.505033	V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
BRCA2	Hs.34012	Breast cancer 2, early onset	KRT17	Hs.2785	Keratin 17
C11orf30	Hs.352588	Chromosome 11 open reading frame 30	KRT5	Hs.433845	Keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Cockayne types)
CCND1	Hs.523852	Cyclin D1	KRT8	Hs.533782	Keratin 8
CCNE1	Hs.244723	Cyclin E1	MAP2K1	Hs.145442	Mitogen-activated protein kinase kinase 1
CDH1	Hs.461086	Cadherin 1, type 1, E-cadherin (epithelial)	MAP2K2	Hs.465627	Mitogen-activated protein kinase kinase 2
CDH3	Hs.554598	Cadherin 3, type 1, P-cadherin (placental)	NFKB1	Hs.431926	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)
CRYAB	Hs.408767	Crystallin, alpha B	NFKB2	Hs.73090	Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)
CSK	Hs.77793	C-src tyrosine kinase	PDGFRA	Hs.74615	Platelet-derived growth factor receptor, alpha polypeptide
CXCL12	Hs.522891	Chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)	PDGFRB	Hs.509067	Platelet-derived growth factor receptor, beta polypeptide
CXCL14	Hs.483444	Chemokine (C-X-C motif) ligand 14	РІКЗСА	Hs.85701	Phosphoinositide-3-kinase, catalytic, alpha polypeptide
DHFR	Hs.83765	Dihydrofolate reductase	PIK3R1	Hs.132225	Phosphoinositide-3-kinase, regulatory subunit 1 (p85 alpha)
ECGF1	Hs.592212	Endothelial cell growth factor 1 (platelet-derived)	PITX2	Hs.643588	Paired-like homeodomain transcription factor 2
EGFR	Hs.488293	Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)	PRKCB1	Hs.460355	Protein kinase C, beta 1
ERBB3	Hs.118681	V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)	PTHLH	Hs.591159	Parathyroid hormone-like hormone
ERBB4	Hs.390729	V-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian)	RAD51C	Hs.412587	RAD51 homolog C (S. cerevisiae)
ESR2	Hs.660607	Estrogen receptor 2 (ER beta)	RAD51L1	Hs.172587	RAD51-like 1 (S. cerevisiae)
FANCF	Hs.651196	Fanconi anemia, complementation group F	RAD51L3	Hs.631757	RAD51-like 3 (S. cerevisiae)
FLT1	Hs.507621	Fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor receptor)	RAF1 TRIM29	Hs.159130 Hs.504115	V-raf-1 murine leukemia viral oncogene homolog 1
FLT3	Hs.507590	Fms-related tyrosine kinase 3			Tripartite motif-containing 29
FLT4	Hs.646917	Fms-related tyrosine kinase 4	TYMS	Hs.592338	Thymidylate synthetase
FRAP1	Hs.338207	FK506 binding protein 12-rapamycin associated protein 1	VEGFA	Hs.73793	Vascular endothelial growth factor A
GSDML	Hs.306777	Gasdermin-like	VEGFB	Hs.78781	Vascular endothelial growth factor B
			XRCC2	Hs.647093	X-ray repair complementing defective repair in Chinese hamster cells 2
			XRCC3	Hs.592325	X-ray repair complementing defective repair in Chinese hamster cells 3

Conclusion I

- recurrent/metastatic disease is a heterogeneous disease
- cellular and molecular determinants of such heterogeneity are largely unknown
- the clinical oncologist (surgeon, radiotherapist, med oncol) needs to know either the rough marker for daily routine and the sophisticated pathway that modifies the naural history of a certain cancer

Aknowledgments

CTC team/SIMT

Mirella Marini Camillo Almici Rosanna Verardi Andrea Bianchetti Medical Oncology Giovanni Marini Vittorio D Ferrari Francesca Consoli Gianluca Fogazzi Radiotherapy Dept.

Pathology Dept.

ENT Dept.

